橡胶油中PCA和PAHs含量的快速检测方法

罗 翔,栾利新,马 越,许永红

(中国石油克拉玛依石化公司炼油化工研究院,新疆 克拉玛依 834000)

摘要:用薄层色谱/氢火焰离子化检测器(TLC/FID)和气相色谱-质谱联用(GC-MS)分别快速检测橡胶油的多环芳香族化合物(PCA)和多环芳烃(PAHs)含量。结果表明:TLC/FID与IP 346检测的橡胶油PCA含量接近,TLC/FID检测法的加标回收率为95%~105%;GC-MS与德国BIU公司检测的橡胶油PAHs含量接近,GC-MS检测法的加标回收率为97%~104%。2种检测方法操作简单、试剂用量小、准确度高、重复性好。

关键词: 多环芳香族化合物; 多环芳烃; 橡胶油; 薄层色谱; 氢火焰离子化检测器; 气相色谱-质谱联用; 加标回收率

随着我国轮胎和橡胶制品出口量日益增大,橡胶行业在环保方面的挑战也越来越严峻。作为轮胎和橡胶制品的重要加工助剂,橡胶油的环保性能倍受关注。欧盟2005/69/EC指令规定,从2010年1月1日起,用于轮胎的橡胶填充油中多环芳香族化合物(PCA)含量不得超过3%,8种多环芳烃(PAHs)总含量不得超过10 μg·g⁻¹,且苯并(a) 芘含量小于1 μg·g⁻¹。2005/69/EC指令限制的8种PAHs见表1。

目前检测橡胶油的PCA含量一般采用英国标准IP 346,检测化学品的PAHs含量一般采用国际标准EPA 8270。IP 346采用常规质量法,操作步骤繁琐,试剂用量大,检测1个样品通常需要3~4 h;

EPA 8270的适用范围为固体废弃物基体、土壤、空气和水,其所含的有机物种类和结构比石油产品简单得多,因此该方法不太适用于石油产品的PAHs含量检测。本工作旨在提供一种快捷的方法对橡胶油中的PCA和PAHs含量进行检测。

1 实验

1.1 仪器与试剂

GCMS-QP2010型气相色谱-质谱联用(GC-MS)仪,日本岛津公司产品。棒状薄层色谱/氢火焰离子化检测器(TLC/FID),日本雅特隆公司产品。环己烷和正庚烷,色谱纯;二甲基亚砜和氯化钠,分析纯;PAHs标准品,纯度大于99%,国药集团

耒1	2005/69/EC指令限制的8种PAHs
1X I	2003/03/EU16 文 K 的 的 070作 C ACIS

序号	名 称	分子式	相对分子质量	特征离子质荷比(m/z)	定量离子质荷比(<i>m/z</i>)
1	苯并(a)蒽[Benzo(a)Anthracene]	$C_{18}H_{12}$	228	229, 228, 226	228
2	崫[Chrysene]	$C_{18}H_{12}$	228	229, 228, 226	228
3	苯并(b)荧蒽[Benzo(b)Fluoranthene]	$C_{20}H_{12}$	252	253, 252, 126	252
4	苯并(j)荧蒽[Benzo(e)Fluoranthene]	$C_{20}H_{12}$	252	253, 252, 126	252
5	苯并(k)荧蒽[Benzo(k)Fluoranthene]	$C_{20}H_{12}$	252	253, 252, 126	252
6	苯并(a)芘[Benzo(a)Pyrene]	$C_{20}H_{12}$	252	253, 252, 126	252
7	苯并(e)芘[Benzo(e)Pyrene]	$C_{20}H_{12}$	252	253, 252, 126	252
8	二苯并(a, h)蒽[Dibenz(a, h)Anthracen]	$C_{22}H_{14}$	278	279, 278, 139	278

化学试剂有限公司提供。

1.2 检测条件

GC: Rtx-1MS弹性石英毛细管柱(30 m×0.25 mm×0.25 μ m),进样口温度300 ℃,载气氦气,柱前压强100 kPa,不分流;升温程序为起始温度100 ℃,以4 ℃・min⁻¹的升温速率升至310 ℃,保持2 min。

MS: GC-MS接口温度300 ℃, 扫描范围 25~500 amu, 电子轰击离子化能量 70 eV, EI离子 源温度250 ℃。

TLC/FID: SiII硅胶薄层色谱柱,空气流速2 L·min⁻¹,氢气流速160 mL·min⁻¹,扫描时间30 s。

1.3 检测方法

1.3.1 橡胶油样品前处理

由于橡胶油馏分分布宽,组成复杂,含有大量 烷烃、芳烃和胶质沥青,这些烃类物质对PAHs含 量的检测干扰很大。因此试样在分析前,需要除去 干扰物,萃取出橡胶油中的PAHs。

取一定量的橡胶油(市售)样品,用20 mL环己 烷稀释,移入分液漏斗中,加入10 mL二甲基亚砜,剧烈摇动约2 min,静置分层。将二甲基亚砜相转移 至另一分液漏斗中,环己烷相再用10 mL二甲基亚砜 重复萃取1次,合并二甲基亚砜相,弃去环己烷相。

向二甲基亚砜萃取液中加入8 mL正庚烷和100 mL约70 ℃的氯化钠溶液,剧烈摇动约2 min,静置分层,弃去水相。将正庚烷相用100 mL约70 ℃的氯化钠溶液洗涤2次,弃去水相,将正庚烷相转移至10 mL容量瓶中,定容至10 mL^[1]。

1.3.2 PCA含量检测

橡胶油按照上述方法处理后,配制成不同PCA含量的样品,并用TLC/FID检测,建立PCA含量与响应值的关系,见图1。

用TLC/FID检测橡胶油样品,计算峰面积对应的响应值,橡胶油样品的TLC/FID谱见图2,再通过图1可以推算出其PCA含量。

1.3.3 PAHs含量检测

准确称取适量PAHs标准样品,用甲苯稀释, 配成所需浓度的PAHs标准溶液。用GC-MS检测 PAHs标准溶液和橡胶油样品,参照表1中PAHs特

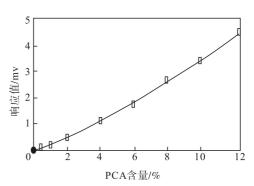


图1 PCA含量与响应值的关系

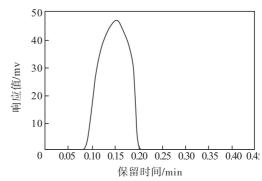


图2 橡胶油样品的TLC/FID谱

征离子质荷比可以对橡胶油样品的PAHs进行定性分析。根据表1中PAHs定量离子质荷比,绘制PAHs离子流色谱,再用外标法定量分析PAHs含量。

PAHs标准样品的离子流色谱见图3,橡胶油样品的PAHs离子流色谱见图4。

橡胶油样品中PAHs含量按下式计算。

$$C_{\rm i} = \frac{A_{\rm i} \times M_{\rm s}}{A_{\rm s} \times M_{\rm i}} \times 1000$$

式中, C_i 为橡胶油样品的PAHs含量, μ g·g⁻¹; A_i 为橡胶油样品的PAHs峰面积; M_s 为PAHs标准样品的质量,mg; A_s 为PAHs标准样品的峰面积; M_i 为橡胶油样品的质量, g_o

2 结果与讨论

2.1 TLC/FID检测橡胶油样品PCA含量的准确度

向橡胶油样品(PCA含量为1.62%)中加入不同量的PCA标准样品,分别用TLC/FID和IP 346检测橡胶油的PCA含量,并计算TLC/FID检测PCA含量的加标回收率,以此考察TLC/FID检测橡胶油样品PCA含量的准确度,结果见表2。

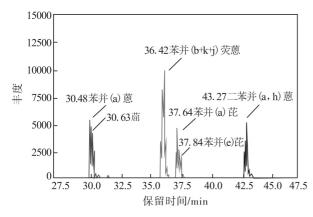


图3 PAHs标准样品的离子流色谱

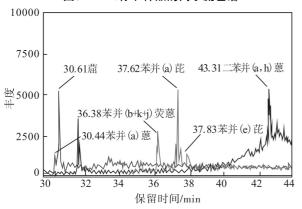


图4 橡胶油样品的PAHs离子流色谱

从表2可以看出, TLC/FID与IP 346检测的橡 胶油样品的PCA含量接近,TLC/FID加标回收率为 95%~105%。在一定条件下,加标回收率可以表示 检测方法的准确度,加标回收率越接近100%,说 明该方法的准确度越高,可以看出TLC/FID检测橡 胶油样品PCA含量的准确度较高。

2.2 GC-MS检测橡胶油样品PAHs含量

2.2.1 特征离子质谱

特征离子为化合物独有的高强度离子, 在质谱 分析中具有较高的灵敏度和精度。苯并(a) 蒽及 苯并(a) 芘标准物质的质谱分别见图5和6。

从图5和6可以看出,PAHs具有显著的分子离 子碎片[2](相对丰度100%),如苯并(a)蒽的特 征离子质荷比为228, 苯并(a) 芘的特征离子质荷 比为252。因此选择不同PAHs的特征离子作为定量 离子,这样可以最大限度地排除橡胶油样品中其他 芳烃对GC-MS检测结果的干扰,提高灵敏度和精 确度。

2.2.2 准确度

本工作向已知PAHs含量的橡胶油样品中加入不 同量的PAHs标准样品,用加标回收率来考察GC-MS

表2 TLC/FID检测橡胶油样品PCA含量的准确度

PCA标准样品用量	//% PCA理论含量/%	IP 346检测的PCA含量/%	TLC/FID检测的PCA含量/%	TLC/FID检测的加标回收率 ¹⁾ %
0.50	2.12	2.27	2.22	104.72
1.25	2.87	3.05	3.02	105.23
1.52	3.14	3.31	3.25	103.50
2.28	3.90	4.01	3.72	95.38
2.56	4.18	4.34	4.12	98.56

注:1)PCA检测含量与PCA理论含量之比。

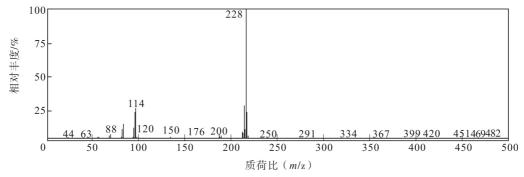


图5 苯并(a) 蒽的质谱

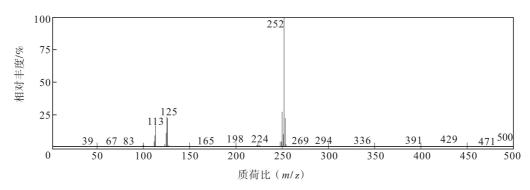


图6 苯并(a) 芘的质谱

检测橡胶油样品PAHs含量的准确度,结果见表3。

从表3可以看出,GC-MS检测PAHs含量的加标 回收率为97%~104%,说明该方法准确度较高,可 以满足分析要求。

为进一步验证GC-MS检测方法的可靠性,将 相同的橡胶油样品送往德国BIU公司进行检测。 GC-MS与德国BIU公司检测的橡胶油样品PAHs含量 见表4。

PAHs种类	PAHs原含量/ (μg·g ⁻¹)	PAHs加入量/ (μg·g ⁻¹)	PAHs理论含量/ (μg·g ⁻¹)	PAHs检测含量/ (μg·g ⁻¹)	J
苯并蒽+ 䓛	0.054	0.095	0.149	0.146	
荣并 (h+i+k) 茵	0.027	0.202	0.229	0.234	

表3 GC-MS检测橡胶油样品PAHs含量的准确度

PAHs种类	PAHs原含量/ (μg・g ⁻¹)	PAHs加入量/ (μg·g ⁻¹)	PAHs理论含量/ (μg·g ⁻¹)	PAHs检测含量/ (μg・g ⁻¹)	加标回收率1)/%
苯并蒽+ 崫	0.054	0.095	0.149	0.146	97.99
苯并(b+j+k)蒽	0.027	0.202	0.229	0.234	102.18
苯并 (e) 芘	0.028	0.057	0.085	0.088	103.53
苯并(a)芘	0.006	0.033	0.039	0.040	102.56
二苯并 (a, h) 蒽	0.000	0.047	0.047	0.046	97.87
总含量	0.114	0.433	0.547	0.552	100.91

注: 1) PAHs检测含量与 PAHs理论含量之比。

表4 GC-MS与德国BIU公司检测的橡胶油样品PAHs含量

PAHs种类	GC-MS检测值/ (μg・g ⁻¹)	德国BIU公司检测值/ (μg·g ⁻¹)
苯并蒽+ 营	0.052	0.055
苯并(b+j+k)蒽	0.796	0.842
苯并(e)芘	5.262	5.024
苯并(a)芘	0.060	0.065
二苯并 (a, h) 蒽	0.525	0.464
总含量	6.695	6.450

从表4可以看出: GC-MS与德国BIU公司检 测的橡胶油样品PAHs含量接近,进一步验证了 GC-MS检测橡胶油样品PAHs含量的可靠性。

2.3 应用

用TLC/FID检测我公司环保橡胶油NAP10及其

原料的PCA含量,并用GC-MS检测PAHs含量,结 果见表5。

从表5可以看出:原料2的PCA和PAHs含量分别 高达8.25%和429.70 µg·g⁻¹; 而环保橡胶油NAP10 的PCA含量小于3%, PAHs含量小于10 μg·g⁻¹, 且 苯并(a) 芘含量小于1 μg·g⁻¹, 符合欧盟2005/69/ EC指令的要求,该产品已于2009年开始对外出口。

3 结语

用TLC/FID和GC-MS可以分别快速检测橡胶油 等石油产品中的PCA和PAHs含量,这2种方法操作 简单、试剂用量小、准确度高、重复性好, 一次可 以同时分析10个样品,30 min即可完成检测,在橡 胶油产品的研发和检测中具有良好的应用前景。本 方法还可推广到其他石油产品的环保性能检测中,为

表5	环保橡胶油NAP	10及其原料的PCA和PAHs含量检测
----	----------	---------------------

项 目	环保橡胶油NAP10	原料1(馏分油)	原料2(抽出油)
苯并蒽+崫含量/(μg・g ⁻¹)	0.95	3.87	69.12
苯并 (b, j, k) +蒽含量/ (μg・g ⁻¹)	1.99	9.91	114.78
苯并 (e) 芘含量/ (μg・g ⁻¹)	4.63	20.00	142.64
苯并 (a) 芘含量/ (μg・g ⁻¹)	0.49	4.44	25.40
二苯并 (a, h) 蔥含量/ (μg·g ⁻¹)	0.42	8.61	77.73
PAHs总含量/(μg·g ⁻¹)	8.49	46.82	429.70
PCA含量/%	2.85	5.21	8.25

石油产品的科研和生产提供准确、快捷的检测手段。

Lubricating Base Oils and Asphaltene Free Petroleum Fractions–Dimethyl Sulphoxide Extraction[S].

参考文献:

[1] IP 346, Determination of Polycylic Aromatics in Unused

[2] 王光辉, 熊少祥. 有机质谱解析[M]. 北京: 化学工业出版社, 2005: 81-82.

Rapid Determination of PCA and PAHs Contents in Rubber Oil

Luo Xiang, Luan Lixin, Ma Yue, Xu Yonghong

(Refining and Chemical Research Institute, PetroChina Karamay Petrochemical Company, Karamay 834000, China)

Abstract: The PCA and PAHs contents in rubber oil were measured rapidly by TLC/FID and GC-MS, respectively. The experimental testing results showed that the PCAs content of rubber oil measured by TLC/FID was close to the IP 346 method, while the recovery of added standard was 95%~105% by using TLC/FID. The PAHs content of rubber oil detected by GC-MS was close to the result measured by German company BIU, and the recovery of added standard was 97%~104% with GC-MS method. These two detection methods are simple, consume only small amount of testing reagents, and provide high accuracy and good reproducibility.

Keywords: PCA; PAHs; rubber oil; TLC; FID; GC-MS; recovery

2016年美国炭黑市场供应不足

美国理查德森炭业公司发布报告,预测到2016年美国炭黑市场可能会出现供应短缺,需依赖进口。该报告指出,美元强势不利于美国炭黑企业与国外炭黑企业竞争;随着国际油价持续走低,石油系炭黑原料油的价格低于煤焦

油系炭黑原料油的价格,这削弱了中国炭黑企业的市场竞争力,俄罗斯炭黑企业在北美的市场份额或许会扩大,但其供货可靠性可能会受到俄罗斯经济和地缘政治不稳定性的影响。

郭隽奎