改性氯磺化聚乙烯橡胶 在全钢载重汽车子午线轮胎气密层胶中的应用

刘 强,李继宗,赵建林 (八一轮胎制造有限公司,山东 枣庄 277800)

摘要:研究改性氯磺化聚乙烯橡胶(MCSM)在全钢载重汽车子午线轮胎气密 层胶中的应用。试验结果表明,在全钢载重汽车子午线轮胎气密层胶中加入适量 MCSM代替部分氯化丁基橡胶(CIIR),胶料的物理性能变化不大,工艺性能和气密性 改善,成本降低,成品轮胎性能相当。

关键词:改性氯磺化聚乙烯橡胶;全钢载重汽车子午线轮胎;气密层;气密性

改性氯磺化聚乙烯橡胶(MCSM)是由低密度和高密度聚乙烯经过氯化和氯磺化反应制得的,其气密性与卤化丁基橡胶相当,耐油性能优于丁腈橡胶,并具有优异的耐老化性能和耐高温性能,与各类二烯烃橡胶有优良的相容性。本工作在全钢载重汽车子午线轮胎气密层胶中添加MCSM部分代替氯化丁橡胶(CIIR),研究其对胶料性能的影响。

1 实验

1.1 主要原材料

天然橡胶(NR),牌号 SMR20,马来西亚产品;CIIR,牌号 1240,德国朗盛公司产品;MCSM,台州市黄岩东海化工有限公司产品;炭黑 N660,江西黑猫炭黑股份有限公司产品。

1.2 配方

生产配方: NR,30; CIIR,70; 炭黑 N660,75, 芳烃油,13; 硬脂酸,2; 氧化锌,3.5; 增黏树脂,3; 防老剂,2; 硫黄和促进剂,2.2。

试验配方: NR, 30; CIIR/MCSM, 70; 炭黑 N660,75; 芳烃油,13; 硬脂酸,2; 氧化锌,3.5; 增黏树脂,3; 防老剂,2; 促进剂 TBBS,0.8; 硫黄,1.4。

1.3 主要设备和仪器

XK-150 型开炼机,广东湛江机械厂产品; \$660 开炼机,青岛双星机械股份有限公司产品; F370 型、F305 型本伯里密炼机,青岛高校软控股份有限公司产品;门尼黏度仪、无转子密闭模硫化仪,上海阿尔法科技有限公司产品;拉力试验机, 高铁检测仪器(东莞)有限公司产品;邵氏 A 型硬度计,江都市腾达试验仪器厂产品。

1.4 试样制备

小配合试验胶料采用两段混炼工艺,在 XK-150 型开炼机上进行。一段加入生胶、炭黑、芳烃油等;二段加入氧化锌、硫黄和促进剂。

大配合试验胶料采用两段混炼工艺。一段 混炼在 F370 型密炼机中进行,工艺步骤为:生 胶(转子转速 50 r·min⁻¹)→加压 → 小料、炭 黑(转子转速 40 r·min⁻¹)→加压 → 提压砣→ 加压 → 加油加压 → 提压砣→加压 → 排胶 (140 ℃);二段混炼在 F305 型密炼机中进行,转 子转速为 20 r·min⁻¹,工艺步骤为:一段混炼 胶→氧化锌、硫黄、促进剂→加压 → 提压砣→加 压 → 压砣浮动 → 加压 → 排胶(100 ℃)。

1.5 性能测试

胶料各项性能测试均按相应国家标准进行。

2 结果与讨论

2.1 理化分析

MCSM 的理化分析结果见表 1。可以看出, MCSM 的理化性能符合公司技术指标要求。

表 1 MCSM 的理化分析结果

项	目	结果	指标	试验方法
灰分含量/%		8, 3	€10	GB/T 4498(B 法)
邵尔 A 型硬度/度		50	$49\!\pm\!3$	GB/T 531.1
拉伸强度/MPa		9, 5	≥9.0	GB/T 528
拉断伸长	率/%	410	≥380	GB/T 528

2.2 小配合试验

小配合试验胶料性能见表 2。

表 2 小配合试验胶料性能

·				
项 目	试验配方	生产配方		
门尼黏度[ML(1+4)100 ℃]	48	48		
焦烧时间 t5(127 ℃)/min	28.50	21.67		
硫化仪数据(161 ℃)				
$M_{\rm L}/({ m dN} \cdot { m m})$	1, 87	1.65		
$M_{\rm H}/({\rm dN \cdot m})$	9. 22	10.60		
t90/min	21, 38	19.75		
硫化胶性能				
密度/(g · cm ⁻³)	1. 200	1. 188		
邵尔 A 型硬度/度	66	66		
100%定伸应力/MPa	2.4	2.4		
300%定伸应力/MPa	7.2	7.7		
拉伸强度/MPa	8.7	9.0		
拉断伸长率/%	395	371		
100 ℃×48 h 老化后				
邵尔 A 型硬度/度	70	71		
100%定伸应力/MPa	4.2	3.4		
300%定伸应力/MPa	7.5	7.3		
拉伸强度/MPa	8.5	8.1		
拉断伸长率/%	285	297		
透气率/[cm³ · cm/(cm² · s · Pa)]	2.948×10 ⁻¹⁴	3.014×10 ⁻¹⁴		

可以看出,试验配方胶料与生产配方胶料的硬度、定伸应力、拉伸强度等物理性能基本相当,试验配方胶料的透气率略有减小,说明添加一定量的 MCSM 替代 CIIR 可提高胶料的气密性。

2.3 大配合试验

在大配合试验中,通过挤出机挤出 12.00R20 轮胎的气密层,挤出螺杆转速为 16 r·min⁻¹,生产线速度为 12 m·min⁻¹。结果显示,试验配方胶料挤出温度约为 97 ℃,正常生产配方胶料挤出温度约为 98 ℃,说明试验配方胶料生热无异常;试验配方胶料压延贴合过渡层与气密层的黏性较好,贴合紧密,无熟胶现象,停放后无喷霜,表面光滑,能满足工艺要求,说明试验配方胶料的挤出工艺无异常。

大配合试验胶料性能见表 3。

表 3 大配合试验胶料性能

项 目	试验配方	生产配方
门尼黏度[ML(1+4)100 ℃]	62	63
焦烧时间 t5(127 ℃)/min	30	23
硫化仪数据(161℃)		
$M_{\rm L}/({ m dN}\cdot{ m m})$	2.06	1.75
$M_{\rm H}/({\rm dN \cdot m})$	8.10	8.70
t90/min	27.67	23, 50
硫化胶性能		
密度/(g・cm ⁻³)	1, 206	1, 192
邵尔 A 型硬度/度	57	55
100%定伸应力/MPa	1.7	4.7
300%定伸应力/MPa	6.4	6.4
拉伸强度/MPa	9.9	10.0
拉断伸长率/%	501	501
100 ℃×48 h 老化后性能		
邵尔 A 型硬度/度	64	66
100%定伸应力/MPa	2, 8	3.2
300%定伸应力/MPa	8.7	9.3
拉伸强度/MPa	9.0	10.0
拉断伸长率/%	316	331
透气量/[cm³/(m² · d · Pa)]	2.667×10^{-4}	4.105×10 ⁻⁴
透气率/[cm³·cm/(cm²·s·Pa)]	3. 148×10^{-14}	4.846 \times 10 ⁻¹⁴

可以看出,大配合试验和小配合试验结果基本一致。试验配方胶料和生产配方胶料的密度、硬度、定伸应力、拉伸强度及拉断伸长率等性能基本相当;试验配方胶料的硫化速度较慢,但气密层胶是外层胶,平坦硫化期长,不会造成欠硫,因此不进行调整;试验配方胶料的透气量比生产配方胶料减小30%,说明试验配方胶料的气密性能有

所提高。

2.4 成品轮胎性能

采用试验配方胶料生产 12.00R20 18PR 全 钢载重汽车子午线轮胎,并按 GB/T 4501 进行成品轮胎耐久性能试验,试验结果见表 4。试验配方轮胎累计行驶时间为 90 h,超过国家标准要求的 47 h,并且与生产配方轮胎相当,均达到企业标准要求。

将试验配方轮胎装配在水煤浆运输车上,在山东枣庄进行实际道路试验,装胎 6条,共计 6个月。试验结果表明:轮胎充气压力为 13.5 MPa,没有出现明显降低,每隔 30 d 充气 1 次。

2.5 成本分析

对气密层胶料配方成本进行测算。与生产配 方胶料相比,每千克试验配方胶料的成本减少约

表 4 成品轮胎耐久性能

项目	试验配方	生产配方
充气压力/kPa	830	830
试验速度/(km·h ⁻¹)	50	50
累计行驶时间/h	90	91
试验结果	通过	通过

1元,按年产100万套轮胎计算,每年可节约生产成本约100万元。

3 结论

在全钢载重汽车子午线轮胎气密层胶中使用 MCSM 部分代替 CIIR,胶料的物理性能变化不 大,气密性有所提高,过渡层与气密层的黏性较 好,对成型接头质量无不良影响,成品轮胎的耐久 性能可达到国家标准和企业标准要求,同时成本 降低。

須亚谢密

汽车产销回升 轮胎应用向格

据中国汽车工业协会预计,2012 年我国汽车销量约 2000 万辆,同比增长 8%左右。而 2011 年我国汽车产销量分别为 1841.89 万辆和 1850.51万辆,同比分别增长 0.84%和 2.45%,增速为 13 年来最低。与 2011 年相比,2012 年国内汽车产销量已经向好。2012 年汽车出口量预计为 105 万~110 万辆,同比增长 25%~30%。同

时,近期美国和欧洲一些国家的汽车销量同比也 开始回升,国内外汽车市场的增长为轮胎行业带 来了机遇。据中国橡胶工业协会轮胎分会初步预 测,2012年全国轮胎总产量为 4.83 亿条左右,同 比增长 5%~7%;其中子午线轮胎 4.32 亿条左 右,增长 8%~9%,子午化率 89%左右。

谢立

SK 全球化学公司 在华建设工艺乙两株联苯里

韩国 SK 创新公司的石化业务部 SK 全球化学公司(下文简称 SK 公司)日前宣布将在宁波建设年产 5 万 t 三元乙丙橡胶(EPDM)装置,预计2014年投产。此举将使 SK 公司的 EPDM 总年产能增加到 9 万 t,该公司将成为亚洲最大的EPDM 生产商。SK 公司计划与中国公司合作建设此项目,并已经开始准备生产基地、原料供应商

及其他必要资源。

EPDM 耐天候性和耐臭氧性能好,是生产汽车用橡胶制品的重要原材料之一。中国是世界上最大的汽车市场,目前对 EPDM 的需求倍增,但国内 EPDM 产能只能满足市场需求的 20%。

钱伯章