专家论坛 SPECIAL REPORT

我国橡胶工业对异戊橡胶的需求分析(一)

李翠屏1,陈志宏2

(1. 北京市经济管理学校,北京 100144; 2. 北京橡胶工业研究设计院,北京 100143)

摘要:顺式1,4-聚异戊二烯橡胶(IR)因分子结构与天然橡胶(NR)相同,性能相近,俗称"合成天然橡胶",是世界上通用合成橡胶(SR)中仅次于丁苯橡胶(SBR)、顺丁橡胶(BR)的第三大品种,凡是使用 NR 的橡胶制品包括轮胎,都可以使用 IR。

关键词:橡胶工业;轮胎;异戊橡胶;耗胶量

1 问题的提出

随着我国国民经济的增长,汽车工业的高速发展,大大促进了橡胶轮胎和各种汽车橡胶配件的需求,目前我国橡胶年耗量已达500万t,居世界第一位。预计到2010年将超过700万t,年均增长6%左右,从2010~2015年如保持年均4%的增长,总耗胶量将超过700万t。而目前橡胶资源已呈紧缺态势,价格攀升。国内天然橡胶(NR)的生产增速缓慢,已无法满足需求的增长,目前年进口NR150万t以上,花费外汇达20亿美元,今后年进口NR将超过200万t,占世界NR总资源的20%以上,大量进口NR的局面改变不了,NR在我国成为紧缺的工业原料问题将长期存在,橡胶也是战略物资,它将成为制约我国橡胶工业、汽车工业乃至整个国民经济发展的重要资源之一。

据有关部门预测,因受地理条件的限制,我国的 NR产量由目前的 50 万 t 最多增加到 70 多万 t,采取"走出去"到东南亚地区种植和加工 NR,增加部分资源,但缺口仍很大;合成橡胶(SR)的生产可随我国石油化工的发展而增加,SR的七大品种,目前我国已能生产丁苯橡胶(SBR)、顺丁橡胶(BR)和乙丙橡胶(EPDM)、丁基橡胶(IIR)、氯丁橡胶(CR)、丁腈橡胶(NBR)六大品种,唯有 IR 生产仍是空白,而其它六大品种均不能取代 NR,只有 IR 可以弥补 NR 的资源不足,因此,现在应积极开发 IR,并形成较大规模的产

业化生产。建议国家从战备角度考虑,在政策上 给予支持。

2 IR 替换 NR 的试验研究

2.1 IR 样品的来源

我国于1966年由吉化研究院、长春应用化学研究所共同开发了钛系 IR,于1970年又开发了稀土 IR,并在吉化建立了年产500 t 的中试装置,进行了长时间的运转,提供了几十吨的 IR,北京橡胶工业研究设计院与有关轮胎企业合作,对这些产品进行了在轮胎中应用的研究,已初步形成了一套应用技术。在此基础上,1973年在北京燕山万吨级 BR 装置上进行了放大及工业考察试验,1975年通过了部级初步鉴定,1987年完成了年产1.3万 t IR 的基础设计,同年稀土催化体系合成异戊橡胶技术开发通过化工部技术鉴定。1992年,上海高桥石化提出了年产1万 t IR 装置可行性研究。

国产稀土 IR 与国外 IR 的基本性能对比如表 1 所示,IR 与 NR 物理性能对比见表 2。

门尼粘度达到 80 以上的稀土 IR 与国外的钛 系 IR 以及 NR 相比,性能基本上是相近的。以此 稀土 IR 做了大量的轮胎应用试验。

2.2 应用试验结果

北京橡胶工业研究设计院对稀土 IR 基本性能做了大量研究工作,提出了在轮胎中应用的方案,并与有关企业联合作了多次实际使用试验,现

列出两批较为典型的试验方案及里程结果(见 表 3~6)。

表 1	国内	IR	样品	与国外	IR	的基本性能对比

項 目	吉化院 JIR 85-01	吉化院 JIR 87-01	日本 Kuraprene IR-10	日本 JSR IR-2200	美国 Natsyn IR-220	当时攻 关指标
順式 1,4-结构含量/%	94		98	98	97	94.5±0.5
相对分子质量分布指数			3. 7	3, 2	2.8	3~4
凝胶含量/%			9.5	19. 0	5.7	<1
门尼粘度[ML(1+4)100 ℃]	88	84	88	82	79	85 ± 0.5
灰分含量/%	0, 10	0. 25	0. 24	0.32	0.35	<0.5
挥发分含量/%	1.60	1.10~1,20	0. 20	0.12	0.32	0.75~1
防老剂含量/%	1. 35	0.80				
外观	白色、灰白色 相间,不均匀	白色均匀	灰白均匀	白色、微黄均匀	白色、微黄均匀	

注:所有数据均系原生产厂家提供的说明数据。

表 2 IR与 NR物理性能对比试验结果

项 目		稀土 IR 42.0		日本 Nipol 2200 40.5		NR 21. 5			
混炼胶门尼焦烧 t5(120 ℃)/min									
硫化时间(141 ℃)/min	30	60	120	30	60	120	30	60	120
邵尔 A 型硬度/度	63	66	66	65	67	66	72	72	74
300%定伸应力/MPa	10.2	11.6	11.6	11.8	13.2	13.1	15. 4	15.9	15.5
拉伸强度/MPa	26.5	25.6	24. 1	29.4	28.6	27.5	28. 9	27, 2	24. 3
拉斯伸长率/%	610	554	530	584	542	522	516	486	472
永久变形/%	18	22	20	22	22	18	32	27	21
撕裂强度/(kN⋅m ⁻¹)	38	36		62	61		73	43	
回弹值/%	36	37		38	38		41	40	
弯曲 2.5 万次裂口长度/mm	9.7	8.0		10.0	10.0		7.7	9.4	
阿克隆磨耗/cm³	_	_		0.332	0.370		0.344	0.326	
压缩生热/C	54	56		54	53		54	53	
100 C×48 h 老化后									
拉伸强度/MPa	16.8	17.7	17. 2	19. 2	20. 1	19.7	21, 6	18. 2	18. 7
拉断伸长率/%	328	346	364	335	354	380	363	320	326

注:试验配方为生胶 100,硬脂酸 3,氧化锌 5,促进剂 NOBS 0.8,防老剂 RD 1.0,高耐磨炭黑 45,硫黄 2。

表 3 桦林、上海、广州轮胎企业试验轮胎(规格 9.00-20)方案特征

方案编号	胎面胶	内外层帘布胶
1	NR/BR 并用比 50/50	SBR/NR 并用比 10/90
2	稀土 IR/BR 并用比 50/50	SBR/稀土 IR/NR 并用比 10/45/45
3	铝钛 IR(日本 IR 2200)/BR 并用比 50/50	SBR/稀土 IR/NR 并用比 10/45/45
4	100%稀土 IR	SBR/稀土 IR 并用比 10/90
5	100%铝钛 IR(日本 IR 2200)	SBR/铝钛 IR 并用比 10/90

表 4 青岛橡胶二厂试验轮胎方案特征(规格 9.00-20)

方案编号	胎面胶	内外层帘布胶
1	NR/BR 并用比 30/70	铝钛 IR/SBR 并用比 70/30
2	NR/BR 并用比 30/70	高门尼粘度稀土 IR/SBR 并用比 70/30
3	NR/BR 并用比 30/70	低门尼粘度稀土 IR/SBR 并用比 70/30
.4	NR/BR 并用比 30/70	高门尼粘度稀土 IR/BR 并用比 70/30
5	NR/BR 并用比 30/70	高门尼粘度稀土 IR/NR 并用比 70/30
6	100%稀土 IR(高、低门尼粘度品种混合)	高门尼粘度稀土 IR/SBR 并用比 90/10

項 目	方案编号							
7 9 E	. 1	2	3	4	5			
方案特征		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
胎面	NR/BR 并用比 50/50	稀土 IR/BR 并用比 50/50	铝钛 IR/BR 并用比 50/50	100%稀土 IR	100%铝钛 IR			
胎体	SBR/NR 并用比 10/90	SBR/稀土 IR/NR 并用比 10/45/45	SBR/铝钛 IR/NR 并用比 10/45/45	SBR/稀土 IR 并用比 10/90	SBR/铝钛 IR 并用比 10/90			
耐磨性								
单耗/								
(km • mm ⁻¹)	9 191	8 998	9 256	9 164	9 187			
指数	100	97.9	99. 7	99. 7	99. 9			
实际里程								
里程/km	100 082	102 620	102 597	95 560	90 249			
指数	100	102. 5	102. 5	95. 5	90. 2			
刺伤/条	4	15	9	10	4			
肩裂/条	2	4	3	14	18			
翻新率/%	82.5	88.3	82	81	75			

表 5 桦林、上海、广州轮胎企业试验轮胎里程试验结果(综合平均数据)

注:试验轮胎合计 330 条,5 个试验点综合结果。

方案编号 项 目 1 2 3 4 5 6 方案特征 NR/BR 并用比 NR/BR 并用比 NR/BR 并用比 NR/BR 并用比 NR/BR 并用比 胎面 ·100%稀土 IR 30/70 30/70 30/70 30/70 30/70 铝钛 IR/SBR 并用比 高门粘度尼稀土IR/ 高门尼粘度稀土IR/ 低门尼粘度稀+IR/ 高门粘度尼稀+IR/ 高门尼粘度稀+IR/ 胎体 70/30 SBR 并用比 70/30 SBR 并用比 70/30 BR 并用比 70/30 SBR 并用比 90/10 NR 并用比 70/30 耐磨性 单耗/ (km • mm⁻¹) 6 723 6 528 6 454 6 541 6 686 6 444 指数 100 97.1 96.0 97.3 99.4 95.9 实际里程 里程/km 72 138 67 559 71 122 67 888 68 367 67 279 指数 100 93.6 98. 6 94. 1 94. 8 93.3 刺伤/条 4 6 9 7 5 6 肩裂/条 0 1 0 0 0 1

83.8

80.3

表 6 青岛橡胶二厂试验轮胎里程试验(汕头、南昌 2 个试点)结果(综合平均数据)

注:试验轮胎合计195条,2个试验点综合结果。

85.3

翻新率/%

笔者综合历次试验结果,得出以下几点结论。

86.7

- 1. 正常生产轮胎胎面胶配方的 BR/NR 并用比为 50/50,以 IR 全替代 NR,即 BR/IR 并用比为 50/50(100%SR),轮胎耐磨性、一次里程、翻新率等指标均与生产配方相当;如胎面全采用 IR,耐磨性也相当,但一次里程及翻新率略有下降,主要问题是胎面胶的刺伤及肩裂有所增加。
- 2. 轮胎帘布胶正常生产配方的 SBR/NR 并用比 30/70,以 IR 全替代 NR,即 SBR/IR 并用比 30/70(100% SR),轮胎使用正常,行驶里程及翻 新率均达到使用要求。
 - 3. 吉化中试稀土 IR 与进口日本铝钛 IR 在

轮胎中应用对比,结果很相近,表明国产稀土 IR 的性能已达到较高水平。

92.8

- 4. IR 的链节结构与 NR 相同,因此具有类似 NR 的良好性能,但它不含 NR 中的非橡胶组分(如蛋白质等),在某些方面不如 NR,主要表现为生胶强度低,半成品表现在于尺寸保持性较差,易变形、易粘连等,尤其在采用 100% IR 时,表现较为突出,但使用比例 50%以下,无明显影响,或者添加 IR 改性剂后,对工艺性能及使用性能都取得较好效果。
 - 5. IR 的门尼粘度宜控制在 80~90 之间。

(未完待续)

85.8