专家论坛 SPECIAL REPORT

国内外汽车用胶管的种类及发展前景(一)

谢 忠麟 (北京橡胶工业研究设计院,北京 100039)

摘要:介绍国内外汽车胶管的种类、技术标准、原材料构成及今后的发展方向。由于所处环境日益严酷、技术要求日益苛刻,胶管的材料构成、结构和工艺等都在不断改进。 关键词:燃油胶管;散热胶管;空调胶管;制动胶管

在汽车橡胶制品中,汽车胶管的品种和使用的材料(橡胶、塑料和增强材料等)种类最多,因为所处环境严酷,技术要求苛刻。

1 燃油胶管

燃油胶管技术上要面对的问题。(1)对指定 燃油有良好的抗耐性;(2)对指定燃油的低透过 性;(3)无铅化;(4)多层结构胶管的层间粘合性。

1.1 橡胶的选用

燃油胶管一般采用内外或内心中外复合胶层结构,见表 1。其中,CSM为氯磺化聚乙烯橡胶,CM为氯化聚乙烯橡胶,FKM为氟橡胶,GECO为不饱和型共聚氯醚橡胶,ECO为共聚氯醚橡胶,CO为均聚氯醚橡胶,HNBR为氢化丁腈橡胶,THV为偏氟乙烯。四氟乙烯、六氟丙烯共聚树脂,AEM为乙烯 丙烯酸酯橡胶,MVQ为乙烯基硅橡胶,ACM为丙烯酸酯橡胶,EVM为乙烯 乙酸乙烯酯橡胶,PA为聚酰胺。

燃油胶管内层胶要能抗所使用的燃油和具有低渗透率(减少汽车尾气排放污染),外层胶要求耐臭氧、耐油和有一定的耐磨性。从表 1可见,燃油胶管的内层胶主要使用 NBR NBR/PVC FKM和 ECQ 目前汽车燃油主要使用高辛烷值(高芳烃)无铅汽油,国内开始推广乙醇混合汽油,国外除了大量使用乙醇混合汽油外,还使用甲醇混合汽油。表 2介绍了几种橡胶对高芳烃汽油和掺醇汽油的抗耐性和透过性。燃油 C保辛烷 伊苯体

积比 50/50)是模拟高芳烃燃油的试验燃油介质。 M15/燃油 C/甲醇体积比 85/15)是模拟掺醇汽油的试验燃油介质。

由表 2可见,FKM耐高芳烃燃油性最优,它的燃油透过率要比 NBR低得多,因此,近年来燃油胶管的内层胶大有以 FKM取代 NBR的趋势,为了节约成本,也可以制成厚度为 0.3~0.7 mm的 FKM隔离层。目前,燃油胶管使用最多的二元氟橡胶 (例如日本大金公司的双酚硫化的 G-755 混炼胶)可以对应欧 2标准,但欧 3标准可能不行,欧 3标准要使用三元氟橡胶 (例如日本大金公司双酚硫化的 G-555, G-558或 G-575)。

使用低丙烯腈(AN)含量的 NBR(AN含量为 26% ~29%,例如丁腈橡胶 26或 N-41)作燃油胶管内层胶显然是不合适的,应该使用 AN较高的 NBR、NBR/PVC共混胶的耐燃油 C和 M-15的性能和透过率均优于同等 AN含量的 NBR 而且共混胶中 NBR的 AN含量越高,耐燃油性越好。从当前产品价格来看,NBR/PVC(70/30)共混胶可以替代 NBR生产燃油胶管,国内已有报道。乳液共沉的 NBR/PVC共混胶的耐油、耐热和耐臭氧性能优于机械共混的 NBR/PVC共混胶。加入少量 CO的 NBR/PVC人CO胶料,可以因 CO在热老化过程中软化现象而补偿 NBR/PVC变硬的不足,从而使产品的老化后硬度增高值减少。还有人用 NBR/CO共混胶生产燃油纺织胶管。

在低醇比的掺醇燃油中,FKM的抗耐性最

好,渗透率最低,最适宜作燃油胶管内层胶,虽然 FKMQ的抗耐性基本上不受醇含量的影响,但它 的强度低,抗撕裂性差,并不适合作掺醇燃油胶管 使用。由表 3可见,在 FKM中,三元 FKM的加醇燃油渗透率小于二元 FKM而以过氧化物硫化的三元 FKM最小,只有双酚硫化的二元 FKM的 1/10

表 1 汽车胶管的主要种类和材料构成

胶管种类	主体材料 (从内层胶至外层胶)	胶管种类	主体材料(从内层胶至外层胶)
燃油系统和汽化器系统胶管		制动系统胶管	
燃油胶管1)		合成制动液制动胶管	EPDM EPDM
普通型	NBR CR		EPDM CR
	NBR (NBR/CR)		EPDM CIIR EPDM
耐臭氧型	$NBR \parallel (CR/CSM)$	 石油基制动液制动胶管	NBR CR,
	NBR (NBR/PVC),		NBR CSM,
	NBR (NBR/BIIR/EPDM),		NBR CSM
	$(NBR/PVC) \parallel (NBR/PVC),$	 自动变速系统(AT系统)胶管 ⁶⁾	
	NBR CSM,	自动变速箱冷却器胶管	
	NBR CM	耐热型	AMII AMI MII M
耐酸性汽油及	FKM NBR GECO或 ECQ	通气胶管	
低透过型	FKM ECOI GECO或 ECO	~ VX I	NBR CR NBR NBR/PVC
	CSM HNBR ECQ		GECO或 ECQ CM
	ECO FKM ECQ	动力转向系统 (PS系统)胶管	,
	THV ECO ECO	动力转向高压胶管(油压泵	
耐热型	HNBR GECO或 ECO	与齿轮间所用胶管)	
则然生	AEM FKM DSM		NBR CR
汽油胶管 ²⁾	11111 1111 111 1111	自选至 耐热型	CSM CSM
八四双目 普通型	NBR CR		CM CM
	NBR CSM NBR CM		ACM ACM
耐臭氧型	GECQ		EVM EVM
耐热型	,	+77.74+5.74	
低透过型	FKM GECO或, ECQ FKM (NBR/PVC)	超耐热型	AEM AEM, HNBR HNBR
ተወ <u>ነተ መታ ም</u> ም 3)	THAT (TABLET VC)		TINDIN TINDIN
加油胶管3)		动力转向低压胶管 油压泵与油	
普通型	中高丙烯腈含量 NBR/PVC	# 箱、齿轮与油箱间所用胶管) ⁷	NIDDII OD
耐臭氧型	(中高丙烯腈含量 NBR/PVC)	普通型	NBR CR
	CSM, (中高丙烯腈含量 NBR/	耐热型	ACM ACM
	PVC) GECO或 CO或 ECO	空调系统胶管	arp priii pres
低透过型	极高丙烯腈含量 NBR/PVC	型 空调胶管 ⁸⁾	CIR PAIL EPDM
	FKM (NBR/PVC)		CIR PA CR
空气系统和真空系统胶管			CIR PA EVM
空气胶管4)			CIR PA HNBR
普通型	NBR CR		PA EPDM EPDM
耐臭氧型	NBR CSM NBR CM		PA EPDM CR
耐热型	GECO或 ECQ		PA EPDM HNBR
	GECO或 ECO CSM, ACM		PA EPDM AEM
超耐热型	MVQ	125 [℃] 级	EPDM(硫黄硫化) EPDM(硫
空气喷射控制胶管5)			黄硫化)EPDM(短纤维增强)
普通型	NBR/CR		EPDM(短纤维增强)
耐臭氧型	NBR CSM, NBR CM	冷却系统胶管	
耐热型	GECO或 EQ	散热器胶管	
	GECO或 ECO CSM	150 ℃级	EPDM(过氧化物硫化) EPDM
ng (= 0÷ **	GECO或 ECO CM, ACM	175°C/II	(过氧化物硫化)
吸气胶管	CM	175 ℃级	MVQ MVQ AEM AEM

注:" \mid "表示胶层与胶层或胶层与隔离层直接相连," \mid "表示胶层与胶层或胶层与隔离层之间有增强层(聚酯、锦纶、芳纶或钢丝等)。 " $_$ "指隔离层。技术动向:1)满足高燃压和高燃温的要求;适应新型燃油;低透过性。2 \setminus 低透过性;适应新型燃油。3)低透过性;适应新型燃油。4)提高耐热性。5)提高耐热性。6)满足自动变速箱($(\stackrel{\rm CVI}{\rm I})$ 的要求。7)提高耐热性。8 \setminus 适应新型冷冻剂 $(\mathop{\rm RI34})$ 改善低渗透性。

表 2 橡胶材料对高芳烃汽油和掺醇汽油的抗耐性和诱讨性

ᅉᄊ	燃油	燃油 C		j
胶 种		透过率 2)		透过率 2)
NBR				
丙烯腈含量 21 %		1 715		
丙烯腈含量 28 %	+69	1 056	+107	1 920
丙烯腈含量 33 %	+48	456	+86	1 452
丙烯腈含量 35 %	$+55^{3}$)		$+97^{3}$	
丙烯腈含量 39 %	+36	240	+71	1 044
丙烯腈含量 45 %	+32	108或 73 ⁴⁾	+58	792
NBR/PVC(共混比 70/30)				
丙烯腈含量 28 %	+48	504	+70	1 044
丙烯腈含量 33 %	+38	300	+61	804
丙烯腈含量 39 %	+34	156	+54	576
FKM				
氟含量 66 %	+11	2 2	+34	
氟含量 70 %	+9	2 2	+12	
CO	$+40^{3}$	168	$+51^{3}$	432
ECO	$+42^{3}$)	252	$+79^{3}$)	1 368
ACM	$+105^{3)}$		$+180^{3}$	

表 3 不同橡胶在掺醇燃油中浸泡 (23 °C×72 h)后体积变化率比较

%

胶 种	高醇比燃油1)	低醇比燃油2)	胶 种	高醇比燃油 1)	低醇比燃油2)
NBR-18	+20. 4	+ 74. 2	ACM	+99.0	+52. 7
NBR-26	+20. 3	\pm 60. 8	EPDM	+42.0	+191.8
NBR-40	+20. 3	+45.9	MVQ	+22.7	+92. 3
NBR-18/PVC(共混比 70/30)	+0.5	+48.2	PU	+ 14. 9	+18.1
NBR-26/PVC(共混比 70/30)	+2.3	+21.9	FKM-26(二元氟橡胶)	+131. 2	+6.4
NBR-40/PVC(共混比 70/30)	+0. 2	+ 11. 1	FKM-246(三元氟橡胶)	+30.0	+6.8
CR	+20.0	+38.9	TP-2(四元氟橡胶)	+8.5	+31. 9
ECO	+25. 6	+13.8			

注: 1) 汽油 /甲醇体积比为 10/90; 2) 汽油 /甲醇 /助溶剂体积比为 85/10/5

1.2 结构的变化

为了进一步降低燃油排放量,最近的动向是由橡胶橡胶复合结构向塑料橡胶复合结构,再

向塑料 *塑*料复合结构发展 (见表 4) 因为所用的塑料有相当低的抗燃油渗透性 (见表 5) 可以实现内、外层共挤出。

表 4 橡胶层 塑料层和塑料层 塑料层复合结构燃油胶软管的特点

编号	结	结构组成		- 工艺特点 应用	
細石	内层	中层	外层	上乙旬級	应用状态
1	THV	ECO	ECO	$^{ m IHV}$ 的燃油透过率约为 $^{ m NBR}$ 的 $_{1/5}$ 000, 因有增强层不能共	现行使用
				挤出; 塑料层与橡胶层粘合困难; 需要硫化	
2	PA ⁽⁾	PVDF4)	$PA^{(1)}$	无增强层 可共挤出	现行使用
3	表面处理 EIFE)		$PA^{(1)}$	粘合性能优良,且随存放时间延长变化小;加工性能好;可共挤出	现行使用
4	EIFE2)	粘合剂5)	$PA^{(1)}$	ETFE表面处理较困难,粘合剂的粘合效果不够理想;可共挤出	现行使用
5	EFEP8)		$PA^{(1)}$	EFEP可以适应多种燃油;EFEP低熔点,可以共挤出;加工性能优;	
				由于在 EFEP上导入反应性基团,与 PA发生化学反应后有	正在开发
				优异的粘合强度	

注: 1) Nylon 12 2) PE/四氟乙烯共聚树脂 (例如 Neoflon EP 610); 3) 乙烯 /四氟乙烯 /六氟丙烯共聚树脂; 4) 聚偏氟乙烯树脂; 5) 例如 EA-IR43

份

表 5 不同材料的加醇汽油透过性比较

材 料	氟含量 🆄	硫化剂	透过率 1)
二元 FKM(G-755)	66	双酚 AF	231
三元 FKM(G-555)	69	双酚 AF	67
三元 FKM(G-902)	71	过氧化物	22
ETFE(EP-610)			0. 3
PA(Nylon 12)			179

注: 1)试验条件为燃油 C /甲醇体积比 ~80 /20 温度 $~40\,^{\circ}$ C, 单位为 $^{g_{\circ}}$ $^{mm_{\circ}}$ $^{m-2}$ $^{\circ}$ d $^{-1}$

1.3 无铅化

氯醚橡胶常用于燃油胶管的中层胶和外层 胶,例如 2000年 10月颁布的大众公司标准 TL 524. 24 (FKM/ECO/ECO)和 2000年 5月颁布的 福特公司 WSD M96 D9-A2 (FKM/ECO/ECO)以及大众公司的 TL 524. 95 (THV/ECO/ECO)均对此作了相关规定。

以往, 二元氯醚橡胶 (ECO)使用的硫化剂是硫脲 (例如 NA-22), 稳定剂 (酸受剂)是铅化合物 (四氧化三铅、亚盐基亚磷酸铅等)。 2005年7月开始, 汽车高压胶管和燃油胶管禁止使用含铅硫化剂, 橡胶配方设计必须无铅化。

在 ECO配方中,TCY(2.4.6 = 3 基均三嗪)作硫化剂、钙、镁吸酸稳定体系(碳酸钙或硬脂酸钙 氧化镁),是目前燃油胶管无铅化配方首选的体系。与 NA-22硫化胶比较,TCY硫化胶除拉伸强度低一些之外,压缩永久变形和长期耐热性($125\,^{\circ}C \times 1\,000\,$ h)均优于前者,而耐油性、耐寒性、耐臭氧性以及与氟橡胶的粘合性两者相当。噻二唑(ECHO)也是 ECO胶料的无铅硫化剂(吸酸剂为碳酸钡)。含 TCY和 ECHO的混炼胶存在焦烧快的问题。

更新型的无铅硫化剂是 XI_21(2,3二巯基氨基甲酸盐甲基喹噁啉)。它以氢氧化钙为吸酸剂,其硫化胶与 NA-22硫化胶相比,基本物理性能相当,但耐金属污染性、耐长期热老化、压缩永久变形、密封性以及与氟橡胶的粘合性都要比 NA-22硫化胶好得多,耐臭氧性和耐寒性两者类似。含 XI_21比含 TCY和 ECHO的混炼胶的贮存稳定性和压缩永久变形均有改善。

用 TCY取代 NA-22 的无铅化 ECO燃油胶管,已达到大众和福特公司相关标准,其配方设计的主要特点见表 6.

表 6 符合福特汽车公司和大众汽车公司标准的 ECO燃油胶管胶料硫化体系组成

	WSDM	96 D9-A <u>2</u>	WW TL 524 24		
组 分	有铅	无铅	有铅	无铅	
硫化剂 TCY	0	1	0	1	
促进剂 NA-22 ¹⁾	1. 38	0	1. 33	0	
促进剂 D	0	0. 45	0	0	
促进剂 CZ ¹	0	0. 63	0	0 25	
促进剂 MTT3)	0	0	0	1	
二盐基亚磷酸铅2)	12. 5	0	12.5	0	
碳酸钙	0	1. 5	0	5	
氧化镁	0	1	0	3	

注: 1)有效成分含量为 75%; 2)有效成分含量为 80%; 3)3甲基 噻唑烷 硫酮-2 牌号为 Rhenogram MTT80 有效成分含量为 80%。 ECO为日本瑞翁公司产品 牌号为 Gechron C 2000 L

1. 4 氯化聚乙烯橡胶 (CM)外层胶

燃油胶管外层胶一般采用 CR NBR/PVC ECQ GECC和 CSV制作。近年来,由于噻二唑硫化体系的出现,使 CM成为燃油胶管、输油胶管、钢丝编织、缠绕胶管等胶管外层胶的强有力的竞争对手。4种燃油胶管外层胶的性能比较见表 7。

由表 7可见,在 4种胶管外层胶中,CM具有优良的耐热性、耐臭氧老化性、压缩永久变形性和耐磨性。在 $125\ ^{\circ}C\times 1\ 008\$ 的长期热空气老化

表 7 4种燃油胶管外层胶(过氧化物 硫化体系)的性能比较

		外层胶主体材料				
项目	CM1)	CSM ²)	NBR/ PVC ³)	GECO ⁴⁾		
压缩应力松弛试验						
$(125 \degree \times 72 \text{ h})$						
应力保持率 🆄	27	13	4	21		
压缩永久变形 🆄						
100 °C × 22 h	7	19	31	25		
125 °C × 70 h	23	71	59	73		
150 ℃×70 h	40	179	86	93		
DIN磨耗量 /mm³	174	179	211	340		
150 ℃ × 70 1老化后						
100%定伸应力变化率 /%	+57	± 28	脆化	± 48		
拉断伸长率变化率 🆄	-21	- 45	脆化	-51		
150℃×1068						
拉伸强度保持率 🆄	96	90	脆化	55		
拉断伸长率保持率 %	68	42	脆化	12		
RM903油浸泡 (150 ℃×70 h)后	i					
体积变化率 🆄	\pm 34	± 40	-8	± 4		
燃油 (透过率 /(^{g。 m-2。 d-1})	1 920	2 390	420	230		
臭氧老化试验5)	无龟裂	无龟裂	无龟裂	无龟裂		
玻璃化温度 (DSC法) /℃	— 36. 3	— 38. 0	-310	<u>-43. 6</u>		

注: 1)牌号为 Tyrin 0136 美国陶氏化学公司产品; 2)牌号为 Hypa [cn 4085 美国杜邦公司产品; 3)牌号为 Perburan NT/VC 3470 B. 德国拜耳公司产品; 4)牌号为 Hercor T-85 美国 Hercule 公司产品; 5)40 °C×168 ♭拉伸率为 20%, 臭氧体积分数为 200×10⁻⁸。

试验后,只有 CM达到 SAE J2236连续高温下的性能标准,拉伸强度和拉断伸长率的保持率不低于 50%。 CM在油中老化后强伸性能保持率最高,虽然在耐油溶胀性和抗油渗透性方面, CM不如 NBR/PVC和 GECQ但由于燃油胶管的内层胶(如 FKM)起隔离作用,因此,外层胶的耐油性和抗渗透性不是关键问题。加上 CM的价格最低,我国年产 10多万 位世界第一),性能 价格 资源综合评估,CM有望作为胶管外层胶的重要材料。1.5 对未来汽车用燃料—— DME和 GLT的适应性

各种材料对 DME和 GLT的适应性试验结果 见表 8和表 9。

表 8 不同橡胶材料对 DME燃料的适应性比较

胶种	耐溶胀性能	抗渗透性能
FFKM	A	A
IIR	A	A
NBR	A~ C	A~ C
HNBR	A~ C	A~ C
CR	A~ B	B~ C
NBR/PVC	C	A
FKM	C	A
EPDM	B~ C	B~ C
NR	B~ C	B~ C
SBR	C	B~ C
MVQ	C	B~ C

注: 耐溶胀性能和抗渗透性能均分为 3 级,A为好,B为一般,C为差。

表 9 GTL柴油与现用柴油浸渍后橡胶的性能对比

n				
胶 种	柴油品种			
// IT	普通柴油	低硫柴油	GLT柴油	
NBR				
邵尔 A型硬度变化 /度	-2	-2	0	
拉伸强度变化率 🆄	-2	+2	+5	
拉断伸长率变化率 🆄	+54	-8	± 17	
质量变化率 🆄	+2	+1	0	
体积变化率 %	± 4	+2	± 1	
HNBR				
邵尔 A型硬度变化 /度	-5	-3	0	
拉伸强度变化率 🆄	-9	-5	-4	
拉断伸长率变化率 🆄	-19	0	-6	
质量变化率 🆄	± 4	+3	± 1	
体积变化率 %	+3	± 3	± 1	
FKM				
邵尔 A型硬度变化 /度	-1	-1	0	
拉伸强度变化率 🆄	± 1	+7	-1	
拉断伸长率变化率 🆄	-6	0	0	
质量变化率 🆄	0	0	0	
体积变化率 %	0	0	0	

注: 浸泡条件 23 ℃×72 ♭

由8和9表可见,NBR对GLT有很好的抗耐性,现有使用的NBR耐油制品配方不必调整。而DME对橡胶的要求较高,FFKM价格巨贵,不可能选用。IR的耐溶胀性和抗渗透性均佳,可以考虑作为燃油胶管的内层胶,增强材料和外层胶的粘合存在难题。若认真进行配方设计和筛选,NBR亦可采用,但要弄清楚DME对不同橡胶配合剂的影响。 (未完待续)

米其林在法兰克福公布其节能轮胎

米其林在德国法兰克福汽车展上展出了它的 节能轮胎,这种新型轮胎是米其林公司第四代低 滚动阻力乘用车轮胎。

按米其林公司的说法,与 5种最畅销的优质品牌轮胎的平均油耗相比,用于该款轮胎的技术可以使驾驶时 100 km油耗节省近 0.2 li同样也减少了每千米近 4 是氧化碳的排放,这意味着在乘用车的整个寿命中,约减少 1 二氧化碳排放量。

在 2008年第一季度,在替换轮胎经销商处就

可以见到这款节能轮胎,轮胎的规格可以覆盖在欧洲销售的大多数轿车轮胎规格。该款节能轮胎已经被选中用作新型标致 Peugeot308车的原配轮胎。米其林与标致公司商定,在其新车上市发布之后6个月内不采用该技术。

米其林称,正在为轿车轮胎上的能源标签游说,这种标签类似于用在国内冰箱和其他装置上的标签。

米其林声称,它是推荐引入轮胎能量效率指数的第一家轮胎制造商。整个欧洲轮胎工业正在参与这个项目。该体系将涉及创制标签,类似于2006年1月引入到轿车上的显示其油耗和二氧化碳排放的标签。此举让轮胎购买者对市场上的每条轮胎一看便知其"能量性能"。 谢立