反式-1,4-聚异戊二烯橡胶的制备及其在轮胎胶料中的应用(二)

黄宝琛

(1. 青岛科技大学, 山东 青岛 266042; 2. 青岛第派新材有限公司, 山东 青岛 266604)

(续上期)

4 TPI用于轮胎中问题和效益

4.1 问题

从以上试验数据可以看出,TPI不仅可以部分替代NR在轮胎胶料中使用,还能显著提高轮胎性能。但TPI作为一种新材料,国内外胶料配合和加工的经验都不足,且TPI具有强烈结晶性,因此其应用还存在如下问题。

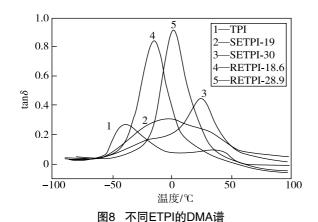
- (1) 炼胶。TPI从结晶熔融到分散需要一定的温度和时间,传统的开炼温度和密炼时间都难以保证TPI在胶料中充分分散,以至于TPI的优点表现不明显甚至导致胶料性能变差。因此,使用TPI时应调整炼胶工艺条件(如先将TPI塑炼制成TPI母炼胶)。
- (2)成型。混炼胶停放后会因TPI结晶而变硬,使得半成品胶料的塑性和粘合性能不好,造成成型困难,建议将胶料预热到50℃左右(如用微波加热)再成型。
- (3)硫化。因为含有TPI,混炼胶刚入模加压时较硬、流动性不足,从而造成橡胶制品(特别是厚制品和花纹复杂的制品)某些部位缺胶,应采用预热的方法提高混炼胶流动性。

总之,这些问题将随着TPI的应用推广而逐步 得到改进和解决。

4.2 效益

以20~25 份TPI替代SBR用于胎面胶计算,每条轮胎使用300~500 gTPI,可节省燃油 35~50 L; 1 t TPI可节省燃油约10万L,减小二氧化碳排放量200 t,延长轮胎行驶里程20%左右。

5 TPI改性材料


TPI有许多优点,但也有不足之处,例如结晶倾向很强,给炼胶、成型及硫化工艺带来不便; 抗湿滑性能不如SBR和NR; 粘合性能不如NR, 气密性不如IIR, 耐磨性能不如BR等。针对TPI的不足,可用物理或化学的方法对其进行改性,提高TPI性能,这是TPI发展的重要方向。

5.1 环氧化TPI(ETPI)

不饱和橡胶环氧化后,极性的环氧基团增多,胶料粘合性能、耐油性能、耐磨性能、抗湿滑性能和气密性等提高。环氧化改性是橡胶重要的改性方法,几乎所有胶种都可以进行环氧化改性,但目前商业化的环氧化橡胶只有环氧化天然橡胶(ENR)。马来西亚和我国开发了ENR(溶液法和乳浆法),品种有ENR-25和ENR-50等。制备ENR必须先将NR降解,再环氧化,成本较高。而制备ETPI可在合成TPI时调节其相对分子质量,该工艺更容易实施,制备ETPI的成本也比制备ENR低。

ETPI的制备可以采用溶液法,也可以采用水相悬浮法。前者先将TPI溶解在适当的溶剂中,再用过氧酸环氧化;后者将TPI粉末悬浮在水相中,再用过氧酸环氧化。不同工艺制备的ETPI的DMA谱见图8[SETPI表示水相悬浮法ETPI,RETPI表示溶液法ETPI,后面的数字表示环氧化程度(单位%)]。

从图8可以看出: RETPI的tanδ 峰窄且对称, 且峰高明显高于SETPI; 环氧化程度越高, SETPI和 RETPI的tanδ 峰也越高,且向高温方向移动。说明 环氧化程度高的胶料环氧基多,极性增大,分子间

作用力增大。

未改性的TPI有2个明显的 $\tan\delta$ 峰,低温峰对应玻璃化温度($T_{\rm g}$),高温峰对应结晶熔融温度。 SETPI的 $\tan\delta$ 峰较宽,可能是其表面和内部环氧化不均所致;环氧化程度低的SETPI高温峰不明显,低温峰高;SETPI-30高温峰明显,但仍存在低温峰,说明其仍有部分TPI未被环氧化。

与未改性的TPI相比,RETPI 60 $^{\circ}$ C时的 $\tan\delta$ 更小,说明其滚动阻力更小;而SETPI的60 $^{\circ}$ C时的 $\tan\delta$ 稍大,其滚动阻力略高,但差别不大。

综合比较,溶液法要采用大量价格昂贵且有毒的有机溶剂,工艺复杂,成本高,对环境有污染。而水相悬浮法直接将TPI粉末在水相中环氧化,工艺简单,能耗与物耗都较低,环境污染小,生产成本低(低于ENR),且SETPI的tanδ峰宽,有利于提高轮胎的抗湿滑性能,同时SETPI滚动阻力与RETPI差别不大,所以最终选定水相悬浮法制备ETPI。

ETPI-17和TPI硫化胶的DMA谱见图9,NR/ETPI并用胶的DMA谱见图10。

从图9和10可以看出: ETPI在0 $^{\circ}$ C时的 $^{\circ}$ C时的抗湿滑性能明显改善。

ETPI还可以提高胶料与锦纶帘线和钢丝帘线的粘合性能。NR/ETPI轮胎带束层胶的H抽出力见图 11。从图11可以看出:ETPI用量在15份左右时,橡胶-锦纶帘线的粘合性能较好;ETPI用量在5~15份

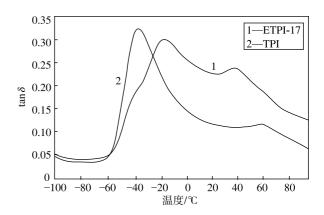


图9 ETPI-17和TPI硫化胶的DMA谱

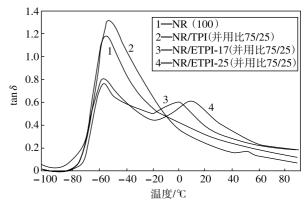


图10 NR/ETPI并用胶的DMA谱

时,橡胶-钢丝帘线的粘合性能较好。

ETPI用于高速轮胎(如乘用车轮胎)胎面胶,可明显提高其抗湿滑性能和耐磨性能,是制备高性能轮胎的优良材料。ETPI环氧化程度对NR/ETPI并用胶性能的影响见表9。从表9可以看出:与NR相比,NR/ETPI并用胶硬度较大,H抽出力明显增大,耐磨性能提高,抗湿滑性能变化不大;随着ETPI环氧化程度提高,胶料定伸应力先增大后减小,环氧化程度为23%~26%的ETPI综合性能较好。

ETPI用量对ETPI/NR并用胶性能的影响见表10。从表10可以看出:与NR相比,ETPI/NR并用胶的硬度增大,定伸应力提高,拉伸强度、拉断伸长率、撕裂强度和回弹值减小,H抽出力明显提高;ETPI用量为30~50份的胶料综合性能较好,TPI用量超过50份后,胶料耐磨性能、拉伸强度和回弹值大幅下降。

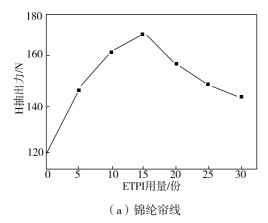


图11 ETPI-25用量对NR/ETPI-25带束层胶粘合性能的影响

表9 ETPI环氧化程度对NR/ETPI并用胶性能的影响

项 目	E1配方	E2配方	E3配方	E4配方	E5配方
主体材料	NR	NR/ETPI-15 (并用比85/15)	NR/ETPI-23 (并用比85/15)	NR/ETPI-26 (并用比85/15)	NR/ETPI-34 (并用比85/15)
邵尔A型硬度/度	66	69	72	78	73
100%定伸应力/MPa	3.4	2.9	3.1	4.4	3.4
300%定伸应力/MPa	13.4	10.6	12.6	14.2	11.5
拉伸强度/MPa	27.2	24.0	23.3	21.8	22.8
拉断伸长率/%	514	574	529	444	528
撕裂强度/ (kN・m ⁻¹)	95	113	84	94	102
H抽出力/N	611	1617	1432	1899	1539
DIN磨耗量/cm³	0.143	0.122	0.132	0.132	0.136
阿克隆磨耗量/cm³	0.315	0.342	0.345	0.245	0.336
抗湿滑因数(相对值)	100	99.1	100	98.8	100
回弹值/%					
23 ℃	41	40	39	31	37
70 ℃	51	48	46	41	46

5.2 反式丁二烯-异戊二烯(TBIR)-TPI复合胶

TPI结晶倾向很强,给炼胶、成型和硫化带来一定的困难,如果用少量的丁二烯与异戊二烯共聚制备TBIR,且其呈反式结构,TBIR则可在保持TPI原有特性的基础上,降低结晶倾向。同时,由于丁二烯单元的嵌入,增加了TBIR的耐疲劳性能和耐磨性能。

TBIR聚合采用与TPI聚合相同的催化体系,合成工艺有2种。第1种工艺:同时加入异戊二烯和丁二烯,竞聚率大的丁二烯消耗完后,异戊二烯

均聚,制得TBIR-TPI复合胶;第2种工艺:先将异戊二烯均聚制得部分TPI,再加丁二烯共聚,制得TBIR-TPI复合胶。

TBIR耐屈挠性能和和耐裂纹增长性能特别优异,其出现1级裂口的屈挠次数可达680万次以上,是NR的100倍,BR的4~5倍,也是传统NR/BR(并用比50/50)胎侧胶的15~20倍。TBIR胎侧胶与其它胎侧胶性能对比见表11,可以看出TBIR具有优异的耐屈挠性能。

由于丁二烯单元的嵌入,TBIR结晶倾向受到 限制,生胶硬度减小,加工性能改善,更易炼胶、

表10 ETPI用量对ETPI/NR并用胶性能的影响

项 目	F1配方	F2配方	F3配方	F4配方	F5配方
主体材料	NR	NR/ETPI-25 (并用比90/10)	NR/ETPI-25 (并用比70/30)	NR/ETPI-25 (并用比50/50)	NR/ETPI-25 (并用比30/70)
邵尔A型硬度/度	66	74	77	77	82
100%定伸应力/MPa	2.6	3.9	5.3	5.6	6.6
300%定伸应力/MPa	11.9	14.3	16.8	_	-
拉伸强度/MPa	22.1	20.3	17.8	14.5	12.4
拉断伸长率/%	518	392	318	257	187
撕裂强度/ (kN・m ⁻¹)	86	68	52	47	45
H抽出力/N	414	545	840	1502	1165
DIN磨耗量/cm³	0.133	0.136	0.137	0.127	0.116
回弹值/%					
23 ℃	46	34	26	23	18
70 ℃	60	50	45	46	44

表11 TBIR胎侧胶与其它胎侧胶性能对比

项 目	G1配方	G2配方	G3配方	G4配方	G5配方
主体材料	TBIR-1	TBIR-2	NR	BR	NR/BR (并用比50/50)
丁二烯初始投料摩尔分数/%	10	20			
转化率/%	22	38			
共聚物中丁二烯摩尔分数/%	30.0	42.7			
门尼粘度[ML(1+4)100 ℃]	64.7	28.0	88.3	44.6	
生胶拉伸强度/MPa	10.4	3.5		0.4	
硫化时间(150 ℃)/min	12	15	10	13	13
邵尔A型硬度/度	68	62	61	63	59
100%定伸应力/MPa	2.5	1.7	1.7	1.6	1.6
200%定伸应力/MPa	6.4	4.7	6.3	5.6	5.2
拉伸强度/MPa	14.9	12.5	22.2	18.1	19.4
拉断伸长率/%	560	690	720	627	770
撕裂强度/ (kN・m ⁻¹)	48	39	70	39	54
回弹值/%					
23 ℃	42.0	31.5	33.0	49.5	39.0
70 ℃	48.0	34.0	40.5	53.0	44.0
压缩生热/℃	8.0	9.0	7.0	5.5	7.0
屈挠龟裂次数×10⁻⁴					
1级裂口	689.0	689.0	5.3	60.5	33.6
6级裂口	>689.0	>689.0	18.0	163.5	240.0

成型和硫化。TBIR-TPI复合胶对全钢子午线轮胎胎 面胶性能的影响见表12。

从表12可以看出: TPI在全钢子午线轮胎胎面 胶中替代部分NR后耐磨性明显提高,同时23 ℃回 弹值(可表征抗湿滑性能)变化不大,生热较低。 因此TBIR-TPI复合胶有望成为高性能胎侧的新型主体材料。轮胎的其他部位(如三角胶等)也可以考虑部分采用TBIR-TPI复合胶。

5.3 TPI/3, 4-IR并用胶

TPI生热低, 耐磨性能好, 但抗湿滑性能不及

表12 TBIR-TPI复合胶对全钢子午线轮胎胎面胶性能的影响

项 目	H1配方	H2配方	H3配方	H4配方	H5配方	H6配方	H7配方
主体材料用量/份							
NR	100	0	0	0	0	0	0
NR/TBIR1 ¹⁾ –TPI	0	90/10	85/15	80/20	0	0	0
NR/TBIR2 ² -TPI	0	0	0	0	90/10	85/15	80/20
硫化仪数据 (151 ℃)							
$M_{\rm L}$ / (dN · m)	2.88	3.33	2.58	3.22	2.92	2.78	3.24
$M_{\rm H}$ / (dN · m)	16.20	16.82	16.52	16.76	16.92	17.05	17.46
t_{10} /min	3.55	4.07	3.44	4.19	4.26	3.29	4.28
t_{90}/min	12.43	13.36	13.07	14.2	14.04	13.55	14.58
硫化胶性能(151 ℃×30 min)							
邵尔A型硬度/度	66	66	66	67	66	67	68
100%定伸应力/MPa	2.48	2.61	2.36	2.52	2.72	2.44	2.81
300%定伸应力/MPa	11.37	11.38	6.8	11.15	12.25	10.76	12.39
拉伸强度/MPa	27.1	27.7	24.6	25.7	27.3	26.2	24.9
拉断伸长率/%	575	664	920	548	561	581	519
撕裂强度/ (kN・m ⁻¹)	95	124	96	93	95	97	97
DIN磨耗量/cm³	0.143	0.128	0.118	0.111	0.112	0.120	0.108
回弹值 (23 ℃)/%	43	40	41	42	42	41	42
生热/℃	24.4	24.4	23.5	25.9	24.6	24.8	25
140 ℃×24 h老化后							
邵尔A型硬度/度	68	69	69	70	70	70	72
100%定伸应力/MPa	2.679	2.367	2.231	3.155	2.491	2.457	3.152
300%定伸应力/MPa	7.01	6.240	5.374	6.12	5.733	6.152	6.303
拉伸强度/MPa	10.16	8.51	7.3	7.37	6.87	8.00	7.45
拉断伸长率/%	406	390	398	358	364	390	334
撕裂强度/ (kN・m ⁻¹)	29.7	30.54	26.22	26.31	24.68	26.67	27.96
DIN磨耗量/cm³	0.238	0.213	0.204	0.201	0.206	0.201	0.188
回弹值(23℃)/%	34	34	35	35	35	35	36

注: 1) 丁二烯含量8.9%, 门尼粘度[ML(1+4)100 ℃]为74; 2) 丁二烯含量8.6%, 门尼粘度[ML(1+4)100 ℃]为84。

NR与SBR, 而对半钢子午线轮胎而言,除了要求滚动阻力小,耐磨性能好以外,更重要的是抗湿滑性能好,安全性好。由于3,4-IR抗湿滑性能突出,TPI/3,4-IR并用胶可以综合两者优点,其生热低,耐磨性能好,抗湿滑性能优。

5.4 低相对分子质量TPI(LMTPIW)

在轮胎胶料配方中,都要加一定量的操作油,如芳烃油与环烷油等,以提高胶料塑性和加工性能。但芳烃油中含有致癌物质,在欧美等发达国家已被禁用。国内发展的环保芳烃油,就是把其中致癌的稠环芳烃除去,但有毒的一般芳烃仍存在。

而且操作油一般都是低相对分子质量物质,随着时间推移会从胶料中慢慢析出,污染环境。最好的方法是用低相对分子质量橡胶或液体橡胶作操作油,其参与硫化且防止析出,同时还提高胶料的性能。欧美一些企业已经采用液体橡胶作加工助剂。 LMTPIW与芳烃油对胶料性能的影响见表13。

从表13可以看出:LMTPIW等量替代芳烃油的 胶料耐屈挠性能明显提高,LMTPIW还可以参与硫 化,防止喷霜,是芳烃油理想的替代品。LMTPIW 除了替代芳烃油在胶料中应用外,还可以作为制备 橡胶助剂母粒的载体。

表13 LMTPIW与芳烃油对胶料性能的影响									
项 目	I1配方	I2配方	I3配方	I4配方	I5配方	I6配方	I7配方	I8配方	I9配方
主要组分用量/份									
SBR	100	100	100	100	100	100	70	80	90
TPI	0	0	0	0	0	0	30	20	10
LMTPIW	10	20	30	0	0	0	10	20	30
芳烃油	0	0	0	10	20	30	0	0	0
硫化仪数据(150 ℃)									
t_{10}/\min	5.65	6.45	7.60	5.08	5.05	6.10	4.43	5.35	6.90
<i>t</i> ₉₀ /min	21.12	21.83	18.73	12.67	17.47	20.23	12.67	16.27	20.65
硫化胶性能(150 ℃×t ₉₀)									
邵尔A型硬度/度	59	55	54	64	58	54	70	63	60
拉伸强度/MPa	23.0	17.9	13.8	23.2	21.9	19.2	20.9	17.1	11.7
回弾值(23℃)/%	46	44	44	42	41	41	44	44	42
1级屈挠龟裂次数×10⁻⁴	90.0	604.8	604.8	12.6	19.8	21.6	37.8	491.4	491.4
140 ℃ × 24 h老化后									
拉伸强度/MPa	21.6	18.4	16.2	21.6	19.0	17.2	18.6	17.3	14.3

6 结语

我国是轮胎生产和消费大国, 我国的轮胎产量 和耗胶量上已是世界第一,但轮胎生产技术还比较 落后,轮胎耗胶量大、滚动阻力大、行驶里程短,

价格也只有国外知名品牌轮胎的一半左右。在安全 性能和低碳经济越来越受重视的今天, TPI等高性 能新型轮胎材料的产业化和应用,必将对我国合成 橡胶工业和轮胎工业产生深远的影响。

(完)

Preparation of Trans-1, 4-polyisoprene Rubber and Its Application in the Tire Compounds

Huang Baochen

(1.Qingdao University, Qingdao 266042, China; 2.Qingdao Dipai New Material Co., Ltd., Qingdao 266604, China)

Abstract: This paper introduces the structure and properties of trans-1, 4-polyisoprene rubber (TPI), precipitation polymerization process by using supported titanium catalyst, applications of TPI in LTR tire and TBR tire, and properties of epoxidized TPI (ETPI) and trans-butadiene-isoprene copolymer (TBIR)-TPI blend. The precipitation polymerization process has the characteristics of low production cost and zero waste discharge. The tire based on TPI showed excellent flex resistance and wear resistance, 2.5% less fuel consumption and about 20% longer mileage.

Keywords: trans-1, 4 -polyisoprene rubber; polymerization process; LTR tire; TBR tire; modified material

欢迎参加2014年"华奇杯"第十届全国橡胶助剂生产与应用技术研讨会