溶聚丁苯橡胶SOL RC2557-A的性能研究

黄庆东1,2,汪峰1,王振华1,崔立山2

(1.中国石油华北化工销售公司,北京 100009; 2.中国石油大学,北京 102249)

摘要:研究中国石油独山子石化公司溶聚丁苯橡胶(SSBR)SOLRC 2557-A的 微观结构、相对分子质量及其分布、硫化特性、物理性能和动态力学性能。结果表明:与国外SSBR 5025-2相比,SSBR SOLRC2557-A的相对分子质量分布略窄,物理性能、耐老化性能和抗湿滑性较好,滚动阻力较小。

关键词:溶聚丁苯橡胶;微观结构;相对分子质量;滚动阻力;抗湿滑性能

溶聚丁苯橡胶(SSBR)是丁二烯和苯乙烯在 烃类溶剂中采用有机锂引发阴离子聚合制得的共聚 物。SSBR非橡胶成分少,相对分子质量分布窄, 顺式1,4-丁二烯含量大。SSBR具有良好的耐磨 性、高回弹性、低滚动阻力和抗湿滑性,目前在轮 胎中的应用正处于稳步增长阶段。

中国石油独山子石化公司引进意大利PE公司 合成橡胶专利技术生产SSBR。本工作以国外SSBR 5025-2为对比样,研究中国石油独山子石化公司 SSBR SOL RC 2557 - A的微观结构、相对分子质量 及其分布、硫化特性、物理性能和动态力学性能。

1 实验

1.1 原材料

SSBR SOL RC2557-A,油含量26%,乙烯基(1,3-丁二烯)含量57%,门尼粘度[ML(1+4)100℃]54,中国石油独山子石化公司产品;SSBR 5025-2,油含量25%,乙烯基(1,3-丁二烯)含量50%,门尼粘度[ML(1+4)100℃]47,国外产品;其他均为橡胶工业常用原材料。

1.2 配方

SSBR, 137.5; 氧化锌, 3; 硬脂酸, 1; 7[#] 通用工业参比炭黑, 68.75; 硫黄, 1.75; 促进剂 TBBS, 1.38。

1.3 混炼工艺

胶料混炼在开炼机上进行。SSBR在(45±5) ℃下塑炼2 min,加入氧化锌混炼6 min,加入硬脂 酸混炼7 min,加入1/2的炭黑混炼10 min,加入剩余炭黑混炼16 min,加入硫黄和促进剂混炼4 min, 薄通6次,下片。

1.3 主要仪器与设备

Magna-750型傅里叶变换红外光谱仪,美国尼高立公司产品; UR-2030型橡胶无转子硫化仪,青岛优肯科技股份有限公司产品; AI-7000S型电子拉力机,台湾高铁检测仪器有限公司产品;动态力学分析仪(DMA),美国TA仪器公司产品。

1.4 性能测试

胶料各项性能测试均按照相关国家标准进行。

2 结果与讨论

2.1 微观结构

SSBR的分子结构式如下。

$$\begin{array}{c} -\left(-CH_{2}CH=CHCH_{\frac{1}{2}}\right)_{x}\left(-CH_{2}CH-\frac{1}{y}\right)_{y}\left(-CH_{2}CH-\frac{1}{y}\right)_{z} \\ -\left(-CH_{2}CH=CHCH_{\frac{1}{2}}\right)_{x}\left(-CH_{2}CH-\frac{1}{y}\right)_{z} \\ -\left(-CH_{2}CH-\frac{1}{y}\right)_{x}\left(-CH_{2}CH-\frac{1}{y}\right)_{z} \\ -\left(-CH_{2}CH-\frac{1}{y}\right)_{x}\left(-CH_{2}CH-\frac{1}{y}\right)_{x} \\ -\left(-CH_{2}CH-\frac{1}{y}\right)_{x}\left(-CH_{2}CH-\frac{1}{y}\right)_{x} \\ -\left(-CH_{2}CH-\frac{1}{y}\right)_{x}\left(-CH_{2}CH-\frac{1}{y}\right)_{x} \\ -\left(-CH_{2}CH-\frac{1}{y}\right)_{x}\left(-CH_{2}CH-\frac{1}{y}\right)_{x} \\ -\left(-CH_{2}CH-\frac{1}{y}\right)_{x} \\ -\left(-CH_{2}CH-\frac{1}{y}\right)_{x}$$

SSBR中有4种结构单元:结合苯乙烯、顺式1,4-丁二烯、反式1,4-丁二烯和1,2-丁二烯。这4种结构单元对SSBR的性能有很大的影响。2种SSBR微观结构组成见表1。

从表1可以看出: 2种SSBR分子构型基本一致,结合苯乙烯含量和丁二烯含量差别不大。

2.2 相对分子质量及其分布

SSBR受聚合条件的影响, 相对分子质量分布

表1 2种SSBR微观结构

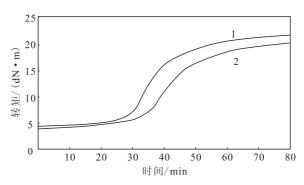
	SSBR 牌号	
项 目	SOL RC2557-A	5025-2
结合苯乙烯含量/%	28	27
顺式 1,4-丁二烯含量/%	21	20
反式 1,4-丁二烯含量/%	23	22
1,2-丁二烯含量/%	56	58

一般较窄 [重均相对分子质量(\overline{M}_{w})/数均相对分子质量(\overline{M}_{n})<2],因而加工性能不佳。在生产中常采用偶联法增加支链数量,提高相对分子质量并拓宽相对分子质量分布,改善其加工性能。同时由于生产体系不够纯净,导致部分活性链过早终止,生成小相对分子质量组分。由于这部分分子难以硫化,致使其变为对弹性无益的链末端,导致胶料弹性降低,滞后损失增大。如随着小相对分子质量级组分增多,60 $^{\circ}$ 它时的 $\tan\delta$ 会逐渐增大。2种SSBR相对分子质量及其分布见表2。

表2 2种SSBR相对分子质量及其分布

76 H	SSBR 牌号	
项 目 	SOL RC2557-A	5025-2
$\overline{M}_{\rm w} \times 10^{-4}$	50	47
$\overline{M}_{\rm n} \times 10^{-4}$	28	25
相对分子质量分布指数 $(\overline{M}_w/\overline{M}_n)$	1.79	1.88

从表2可以看出:2种SSBR相对分子质量及其分布无显著差异,SOL RC2557-A牌号产品的 \overline{M}_{w} 和 \overline{M}_{w} 稍大,相对分子质量分布略窄。


2.3 硫化特性

2种SSBR混炼胶性能见表3,硫化曲线见图1。 从表3和图1看出,与SSBR 5025-2相比,SSBR

表3 2种SSBR混炼胶性能

	SSBR 牌号	
项 目 	SOL RC2557-A	5025-2
门尼粘度[ML(1+4)100 ℃]	74.9	65.2
门尼焦烧时间(120℃)		
<i>t</i> ₅ /min	66.5	69.8
t ₃₅ /min	78.9	88.5
140 ℃硫化仪数据		
$M_{\rm L}/({ m dN \cdot m})$	4.2	3.8
$M_{\rm H}/({ m dN\cdot m})$	22.0	20.4
t ₃₀ /min	32.8	37.8
t ₉₀ /min	56.5	61.0

SOL RC2557-A的相对分子质量分布较窄,其胶料门尼粘度较大, t_5 和 t_{90} 较短, M_L 和 M_H 也较高。总的来看,2种胶料的流动性和硫化特性基本相当。

1—SSBR SOL RC2557-A; 2—SSBR 5025-2°

图1 2种SSBR胶料的硫化曲线(140°C)

2.4 硫化胶性能

2.4.1 物理性能和耐老化性能

2种SSBR胶料物理性能和耐老化性能见表4。 从表4可以看出,与SSBR 5025-2胶料相比, SSBR SOL RC2557-A胶料老化前的拉伸强度、拉断 伸长率和撕裂强度较大,老化后性能变化率较小, 说明其物理性能和耐老化性能均较好。

表4 2种SSBR胶料物理性能和耐老化性能

—————————————————————————————————————	SSBR 牌号	
	SOL RC2557-A	5025-2
硫化胶性能(168 ℃×10 min)		
邵尔 A 型硬度/度	67	66
300% 定伸应力/MPa	11.6	11.8
拉伸强度/MPa	18.1	15.7
拉断伸长率/%	444	391
撕裂强度/(kN·m ⁻¹)	39	36
100 ℃ ×48 h 老化后性能		
邵尔 A 型硬度/度	69	69
邵尔 A 型硬度变化/度	2	3
300% 定伸应力/MPa	14.2	15.0
300% 定伸应力变化率/%	22.4	27.1
拉伸强度/MPa	17.1	15.4
拉伸强度变化率/%	-5.5	-1.9
拉断伸长率/%	358	308
拉断伸长率变化率/%	-19.4	-21.2
撕裂强度/(kN⋅m ⁻¹)	36	33
撕裂强度变化率/%	-7.7	-8.3

2.4.2 动态力学性能

2种SSBR胶料动态力学性能见表5。

表5 2种SSBR胶料动态力学性能

项 目	SSBR 牌号	
	SOL RC2557-A	5025-2
0 ℃时的 tanδ	0. 514	0.467
60 ℃时的tanδ	0. 159	0.160

从表5可以看出:与SSBR5025-2胶料相比, SOL RC2557-A胶料0 ℃时的 $\tan \delta$ 较大,60 ℃时的 $\tan \delta$ 较小,说明其抗湿滑性较好,滚动阻力较小。

2.5 成品轮胎动态力学性能

用2种SSBR试制205/55 R16V XL YH12轮胎, 2 种成品轮胎的动态性能见表6。

从表6可以看出: 2种试验轮胎的滚动阻力均达到C级, 抗湿滑性能均达到B级。与SSBR 5025-2试制的轮胎相比, SSBR SOL RC2557-A试制的轮胎滚动阻力较小, 抗湿滑性能较好。

3 结论

(1)2种SSBR微观结构和相对分子质量无显

表6 成品轮胎动态性能

项 目	1#试验轮胎	2#试验轮胎
主要材料	SSBR SOL RC2557-A/ BR/白炭黑	SSBR 5025-2/ BR/白炭黑
滚动阻力		
滚动阻力因数(RRC)	8.469	8.635
等级	C	C
抗湿滑性能		
抓着力因数(G)	1.47	1.43
等级	В	В

著差异, SSBR SOL RC2557-A的相对分子质量分布比SSBR 5025-2略窄。

- (2)与SSBR 5025-2胶料相比,SSBR SOL RC2557-A胶料的物理性能和耐老化性能均较好。
- (3)与SSBR 5025-2胶料相比,SSBR SOL RC2557-A胶料的抗湿滑性较好,滚动阻力较小。
- (4)与SSBR 5025-2试制的轮胎相比,SSBR 5025-2试制的轮胎滚动阻力较小,抗湿滑性能较好。2种SSBR试制的轮胎滚动阻力均达到C级,抗湿滑性能均达到B级,均可以满足当前出口欧盟的要求。

Properties of SSBR SOL RC2557-A

Huang Qingdong, Wang Feng, Wang Zhenhua, Cui Lishan

(1. PetroChina North China Sales Co., Beijing 100009, China; 2. China University of Petroleum, Beijing 102249, China)

Abstract: The microstructure, molecular weight and molecular weight distribution, curing characteristics, physical properties and dynamic mechanical properties of the solution polymerized styrene-butadiene rubber (SSBR), SOL RC2557-A, from PetroChina Dushanzi Petrochemical Company, were investigated. The results showed that, compared with SSBR 5025-2 which was supplied by a foreign company, the molecular weight distribution of SOL RC2557-A was slightly narrower, the physical properties, aging resistance and wet skid resistance were better, and the rolling resistance was lower.

Keywords: solution polymerized styrene-butadiene rubber; microstructure; relative molecular weight; rolling resistance; wet skid resistance

欢迎订阅2013年《橡胶科技》, 欢迎向《橡胶科技》投稿!