ferent curative and secondary curative levels. The test results showed that TCY was a fast curative at low temperature for ACM with active chlorine and its activation energy for vulcanization—was about 60.52 kJ°mol⁻¹; the comprehensive properties of vulcanizate were obtained by adding small amount of sulfur to ACM compound as secondary curative to increase curing rate and crosslinking density.

Keywords ACM, TCY, vulcanization behavior, activation energy

管道衬胶新工艺

衬胶管道是一种防腐蚀管道,它被广泛应用于化工、医药、冶金、电子、食品和纺织等许多工业部门。目前,国内管道衬胶的工艺大多是手工操作,劳动强度大,施工效率低,尤其是衬胶管道的长度受到限制。这就造成衬胶管道法

兰连接点多,因此泄漏点也多,而且维修困难、费用高,严重时导致停产,同时会污染环境。为此,开发出一种管道内衬橡胶新工艺——机械热压衬胶法。

管道机械热压衬胶法的工艺原理如图 1 所示。

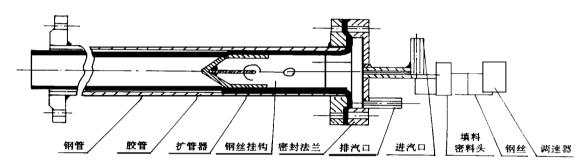


图 1 热压衬胶工艺原理图

钢管左右两端与法兰平焊,钢管内壁和法 兰端面经除渣、除锈和除脂后,涂刷胶浆待用。

根据钢管的规格,用挤出机挤出相应规格的胶管,具体要求为: 当钢管内径小于 100~mm时,胶管外径应比钢管内径小 $2\sim5~\text{mm}$,胶管壁厚为 $(3\pm0.3)~\text{mm}$; 当钢管内径为 $100\sim200~\text{mm}$ 时,胶管外径应比钢管内径小 $5\sim7~\text{mm}$,胶管壁厚为 $(4\pm0.3)~\text{mm}$; 当钢管内径大于 200~mm 时,胶管外径应比钢管内径小 $7\sim9~\text{mm}$,胶管壁厚为 $(5\pm0.3)~\text{mm}$ 。

将胶管定长后送入钢管内,翻折右端法兰胶片,补胶并烙压平整。然后把外表面涂过隔离剂的扩管器塞入胶管内,将钢丝绳上的挂钩与扩管器内的圆环挂接好,即可用螺栓把密封法兰与右端紧固。紧固好后,关闭排汽阀,打开进汽阀,使胶管内保持 0.10~0.14 MPa 的压力,同时,控制好调速器,使扩管器以 100~150

mm°min⁻¹的速度向左端推进,随着扩管器向左端移动,胶管与钢管之间的空气被连续挤出。蒸汽的压力通过扩管器传递给胶管,使得胶管径向扩张并与钢管紧密粘贴,初始粘合强度比手工衬胶大大提高。扩管器到左端时,关闭进汽阀,打开排汽阀,放空胶管内蒸汽,拉出扩管器,卸下右端密封法兰。翻折左端密封法兰。翻折左端法兰胶片,补胶并烙压平整,至此便可将衬胶钢管移入硫化罐硫化。

总之, 机械热压衬胶法制作的衬胶管道长度比手工制作的长 1 倍, 管道衬胶施工和衬胶管道安装的效率成倍提高, 管道使用过程的泄漏率和维修费用大大降低, 有可观的社会和经济效益。

(西安和冲新华橡胶制品有限公司 王春林供稿)