微波连续硫化 CR 海绵的研究

贡 健

(江阴海达橡塑制品有限公司, 江苏 江阴 214423)

摘要: 探讨了 CR 品种、炭黑和发泡剂种类及胶料含胶率对 CR 海绵性能的影响。结果表明,采用 CR8786 (德国拜耳公司产品)作主体材料、炭黑 N774 作补强剂、发泡剂 AC 作发泡剂及胶料含胶率不超过 40%,可制得性能好、成本低的 CR 海绵。

关键词: 微波硫化; CR; 海绵

中图分类号: T 0337⁺. 3 文献标识码: B 文章编号: 1000-890X(2001)09-0526-02

微波通常是指频率在 300~300 000 MHz 之间的电磁波,由于它能穿透橡胶材料,并导致 其内部生热,因而可用于橡胶硫化。由于微波 硫化是从硫化物体内部加热,克服了传统加热 硫化方法造成的硫化物体表面与内部温差较大 的缺陷,因此有利于提高橡胶的硫化质量,并可 大大缩短硫化时间,提高生产效率。

CR海绵集耐油、耐臭氧、耐老化和阻燃等性能为一体,较其它胶种海绵综合性能优异,因此越来越广泛地应用到各个领域。本工作进行了微波连续硫化,CR海绵的研究。

1 实验

1.1 原材料

CR, 牌号 ES-40, 日本电气化学株式会社产品, 牌号 CR8786, 德国拜耳公司产品, 牌号 CR1211, 四川长寿化工厂产品。炭黑 N339, N550 和 N774, 上海卡博特化工有限公司产品。发泡剂 H, 苏州助剂厂产品。发泡剂 OBSH, 美国橡胶公司产品。发泡剂 AC, 上海向阳化工厂产品。其它原材料均为市售品。

1.2 试验设备与仪器

LG-55L 型密炼机, 宁波力钢橡塑机械有限公司产品: XK-400A型开炼机, 上海橡胶机

作者简介: 贡健(1973-), 男 江苏江阴人, 江阴海达橡塑制品有限公司助理工程师, 学士, 从事橡胶制品配方和工艺的研究工作。

械厂产品; Visc TECH 型门尼粘度仪,美国德宝公司产品; EK-100 型硫化仪,台湾育肯公司产品; 微波连续硫化生产线,美国库珀公司产品; 邵尔 C 型硬度计,日本 KORI SEIKI MFG公司产品; 101A-型老化试验箱,上海市实验仪器总厂产品。

1.3 丁艺

- (1)混炼胶制备。胶料在密炼机内混炼,加料顺序为; CR→氧化镁、防老剂、硬脂酸和发泡剂→炭黑和碳酸钙→增塑剂→氧化锌和促进剂→排料、冷却; 冷却胶料在开炼机上返炼、出片。
- (2)海绵制备。在微波连续硫化生产线上, 混炼胶由 Ф90 挤出机挤出并经过微波段(200 ℃×1 min)和热空气段(210 ℃×4 min)发泡硫 化后,进入冷却段冷却、裁切。
- 1.4 性能测试

CR 海绵性能按相应国家标准测试。

2 结果与讨论

2.1 CR 品种的选择

3种 CR 的基本性能见表 1。从表 1 可以看出, CR1211 颜色深、有污染性且加工性能较差, CR8786 和 ES-40 颜色浅、无污染性且加工性能好。由于 ES-40 价格较 CR8786 高, 因此选用 CR8786 作主体材料较好。

2.2 炭黑种类对 CR 海绵性能的影响

炭黑种类对 CR 海绵性能的影响见表 2。 从表2可以看出,随着炭黑粒径的减小,混炼胶

表 1 CR的基本性能

性能	CR1211	ES-40	CR8786
门尼粘度			
[ML(1+4)100°]	20~35	42 ± 5	$50\!\pm\!8$
结晶性	中	小	中偏小
污染性	有	无	无
颜色	深	浅	浅
相对密度	1. 23	1. 23	1. 23
加工性能(混炼、挤出和			
压延)	差	好	好

注: 试验配方: CR 100; 氧化锌 5; 氧化镁 4; 硬脂酸 2; 发泡剂 AC 8; 助发泡剂 2; 促进剂 2 5; 防老剂 2; 炭黑 N774 40; 碳酸钙 30; 增塑剂 DOS 40。

表 2 炭黑种类对 CR 海绵性能的影响

项 目	炭黑 N774	炭黑 N550	炭黑 N339
炭黑粒径/nm	60~100	40~48	26~30
CTAB表面积/			
$(m^2 \circ g^{-1})$	29	42	95
硫化仪数据(160 ℃)			
$t_{\rm s2}/\min$	2. 50	2. 28	2. 02
t ₃₅ / min	4. 12	3. 80	3. 58
<i>t</i> 90/ min	9. 35	9. 03	9. 18
海绵性能			
密度/(Mg°m ⁻³)	0. 455	0. 506	0. 562
邵尔 C 型硬度/度	16	24	25
弹性	好	较好	一般

注: 试验配方: CR8786 100; 氧化锌 5; 氧化镁 4; 硬脂酸 2; 炭黑 40; 碳酸钙 30; 增塑剂 DOS 40; 发泡剂 AC 8; 助发泡剂 2; 促进剂 2 5; 防老剂 2。

的 t_{s2} , t_{35} 和 t_{90} 缩短, 即易出现焦烧现象; 同时, 海绵的密度增大和硬度升高。这是由于炭黑粒径越小, 补强性越好, 胶料的发泡率越小, 因而海绵的密度越大和硬度越高。因此, 选用粒径较大的炭黑 N774 作 CR 海绵补强剂较好。

2.3 发泡剂种类对 CR 海绵性能的影响

发泡剂种类对 CR 海绵性能的影响见表 3。 从表 3 可以看出,发泡剂 OBSH 有促进 CR 海绵硫化的作用,其海绵的密度和压缩永久变形大、硬度低、表面有小气泡(由发泡剂 OBSH 分解温度低,胶料发泡速度比硫化速度快造成);发泡剂 AC 有延迟 CR 海绵硫化的作用,其海绵的密度和压缩永久变形小、硬度高、表面光洁,发泡剂 H对 CR 海绵硫化的影响不大,其海绵的密度、压缩永久变形和硬度较大,表面较光洁。因此,发泡剂选用发泡剂 AC 较好。

表 3 发泡剂种类对 CR 海绵性能的影响

	空白	发泡剂	发泡剂	发泡剂
- 火 日	エロ	Н	AC	OBSH
硫化仪数据(160 ℃)				
$M_{\rm I}/({\rm N}{}^{\circ}{\rm m})$	12. 20	12. 97	10.74	11. 79
$M_{\rm H}/({ m N^{\circ}m})$	18. 01	18. 87	16.01	46. 55
$t_{\rm s2}$ / min	9. 21	9. 23	9. 65	5. 82
海绵性能				
密度/(Mg°m ⁻³)	_	0. 404	0. 381	0. 455
邵尔 C 型硬度/度	_	15	16	10
压缩永久变形 */				
9/0	_	15	13	35
表观	_	较光洁	光洁	有小气泡

注: *压缩率 25% 70 °C× 22 h。 试验配方: CR8786 100; 氧化锌 5; 氧化镁 4; 硬脂酸 2; 炭黑 N774 40; 碳酸钙 30; 增塑剂 DOS 40; 发泡剂 4; 助发泡剂 2; 促进剂 2.5; 防老剂 2。

2.4 胶料含胶率对 CR 海绵性能的影响

胶料含胶率对 CR 海绵性能的影响见表 4。 从表 4 可以看出, 胶料含胶率大的 CR 海绵硫 化速率快、密度小、硬度低和弹性好。 因此 CR 海绵的含胶率应根据产品的性能和成本要求综 合确定, 但一般不宜小于 40%。

表 4 胶料含胶率对 CR 海绵性能的影响

	28. 13%	42. 46%
	26. 13/0	42. 40/0
炭黑 N774 用量/ 份	70	40
碳酸钙用量/份	100	30
变压器油用量/份	20	0
增塑剂 DOS 用量/ 份	0	40
硫化仪数据(160 ℃)		
$t_{\rm s2}$ / min	3. 18	2. 50
t ₃₅ / min	4. 17	4. 12
t ₉₀ / min	11. 37	9. 35
海绵性能		
密度/(Mg°m ⁻³)	0. 820	0. 455
邵尔 C 型硬度/度	62	16
弹性	差	好

注: 基本配方: CR8786 100; 氧化锌 5; 氧化镁 4; 硬脂酸 2; 发泡剂 A C 8; 助发泡剂 2; 促进剂 2 5; 防老剂 2。

3 结语

用 CR8786 作主体材料、炭黑 N774 作补强剂、发泡剂 AC 作发泡剂且胶料含胶率不小于40%,可制得性能好、成本低的 CR 海绵胶。

收稿日期: 2001-03-16