丁腈橡胶-40/三元共聚型氯醚 橡胶并用的研究

刘毓真 王 军 周友生

(青岛化工学院橡胶工程学院 266042)

摘要 对丁腈橡胶-40(NBR-40)与三元共聚型氯醚橡胶(CHC)进行了并用研究,发现二者之间的相容性良好。NBR-40/CHC 并用比为80/20 时,胶料的综合物理性能较好;为70/30 时,胶料耐40"机油的性能最好;耐四氯化碳溶剂的性能随并用比的减小(CHC 用量增加)而提高。胶料硫化体系以过氧化物硫化体系[过氧化二异丙苯(DCP)/硫黄/四氧化三铅/促进剂 NA-22]最佳,补强剂选用中超耐磨炭黑。

关键词 丁腈橡胶、氯醚橡胶、橡胶并用

众所周知,丁腈橡胶的耐油、耐热和气密性能较好,但耐臭氧、耐低温和耐屈挠性能较差;氯醚橡胶的耐油、耐热、耐臭氧、耐有机溶剂(特别是氟里昂)及气密性能优良,但加工性能较差、强力较低、老化后期易发粘和价格昂贵。为了改善丁腈橡胶的耐臭氧、耐低温、耐屈挠龟裂和耐有机溶剂等性能,克服氯醚橡胶使用上的一些不足,我们进行了丁腈橡胶-40 和三元共聚型氯醚橡胶的并用研究,取得较好的效果。现将本研究的情况简介如下。

1 实验

1.1 主要原材料

三元共聚型氯醚橡胶(CHC),沧州市合成橡胶厂产品;丁腈橡胶-40(NBR-40),兰州石油化学工业公司产品。

1.2 胶料配方及炼胶工艺

试验所用基本配方为: NBR-40/CHC 100; 过氧化二异丙苯(DCP) 1.5; 硫黄 0.3; 四氧化三铅 5; 促进剂 NA-22 1.5; 硬脂酸锌 1; 防老剂 NBC 1; 高耐磨炭黑 60; 液体 NBR 5。

将 NBR-40 进行塑炼,然后在开炼机上与 CHC 共混,混匀后,依次加入硬脂酸锌、四

氧化三铅、防老剂 NBC、高耐磨炭黑、增塑剂 (液体 NBR),再加入 DCP、硫黄和促进剂 NA-22,薄通 7次,下片。

1.3 性能测试

胶料正硫化点用 LH- I 型硫化仪于 160 C 下测试:各项力学性能按国家标准进行测试:耐老化性能在热空气老化箱中,于 100 C×48h 条件下老化后测试。

2 结果与讨论

2.1 NBR-40 与 CHC 的相容性

将 NBR-40/CHC 并用比为 70/30 的混炼胶摄取电镜照片(电子显微镜为 JEM-2000EX 型,日本 JEOL 电子公司生产),如图 1 所示,图中深色部分为 NBR-40 相,浅色部分为 CHC 相。图 2 为纯 NBR-40 胶料的电镜照片。由图 1 看出,两相之间无明显界面,且相互渗透,说明 NBR-40 与 CHC 的相容性很好。

2.2 NBR-40 与 CHC 的并用比对胶料物理 机械性能及老化性能的影响

由于当 CHC 的用量超过 50 份时,混炼 出现粘辊现象,因此 NBR-40/CHC 的试验并 用比取 100/0,90/10,80/20,70/30,60/40 和 50/50。胶料的物理机械性能如图 3 所示。由

图 1 NBR-40/CHC(70/30)并用胶料 的电镜照片

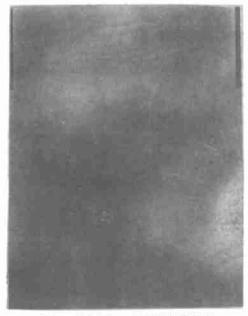


图 2 纯 NBR-40 胶料的电镜照片

图 3 看出,NBR-40/CHC 的并用比为 80/20 时,胶料的拉伸强度、扯断伸长率最大,尔后随并用比的减小(CHC 用量增加)拉伸强度和扯断伸长率下降;随 NBR-40/CHC 并用比的减小,胶料弹性提高,扯断水久变形减小,硬度基本不变。

NBR-40/CHC 并用比对胶料老化性能 的影响见表 1。由表 1 看出,并用比为 80/20

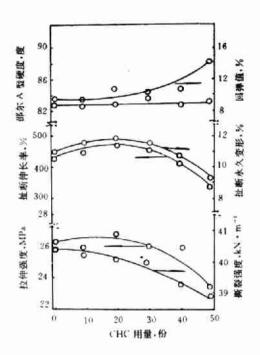


图 3 NBR-40/CHC 并用比对胶料 物理机械性能的影响

胶料硫化时间(160 ():100/0 36min:90/10 36min: 80/20 27min:70/30 24min:60/40 25min: 50/50 25min(以后图间)

表 1 NBR-40/CHC 并用比对胶料 老化性能的影响

	TO IT IT I	40 IT IT HER THOUGH							
H HILL	拉伸强	扯断伸	扯断永久	老化					
并用比	度.MPa	长率,%	变形,%	系数					
100/0									
老化前	25.20	450	10.3	-					
老化后	23.10	330	9.6	0.672					
90 10									
老化前	24.71	445	10.4	+					
老化后	22.15	325	9-7	0.665					
80 20									
老化胸	24.66	477	11.6	-					
老化后	25. 36	384	10.6	0.805					
70.30									
老化前	23, 93	455	11.3						
老化后	22, 22	336	10.3	0.686					
60/40									
老化前	24. (1)	424	10.8	1					
老化厅	21.55	310	10.0	0.656					
50/50									
老化前	21.40	338	8. 0						
其化后	21-10	252	9.0	0, 735					

时,老化后的拉伸强度、扯断伸长率、扯断永久变形都较好。

2.3 NBR-40/CHC 并用比对胶料耐四氯化 碳溶剂和 40 "机油性能的影响

胶料在四氯化碳溶剂和 40[®] 机油中浸泡后重量变化率如图 4 所示。由图 4 看出,胶料在四氯化碳溶剂中浸泡 24h 的重量变化率,随 NBR-40/CHC 并用比的减小而减小,而在 40[®] 机油中浸泡 72h 的重量变化率在并用比为 70/30 时最小。

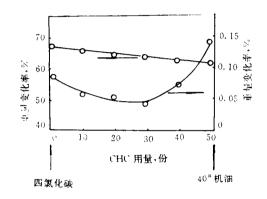


图 4 NBR-40/CHC 并用比对胶料在四氯 化碳溶剂和 40°机油中浸泡后 重量变化率的影响

在四氯化碳溶剂中浸泡 24h:在 40 [#] 机油中浸泡 72h(图 5 同)

胶料在四氯化碳溶剂和 40^{*} 机油中浸泡后的物理机械性能如图 5 所示。由图 5 看出,胶料在四氯化碳溶剂中浸泡 24h 后,其拉伸强度和扯断伸长率随 NBR-40/CHC 并用比的减小而提高: 胶料在 40^{*} 机油中于室温下浸泡 72h,其拉伸强度和扯断伸长率在并用比为 70/30 时最大。

2. 4 NBR-40/CHC 并用胶料硫化体系的选择

从前面讨论的情况来看·NBR-40/CHC的并用比为80/20时胶料的综合性能较好。因此用80/20并用比的胶料来进行硫化体系的选择实验。实验结果见表2。由表2看出,采用过氧化物硫化体系·胶料的强伸、耐热氧

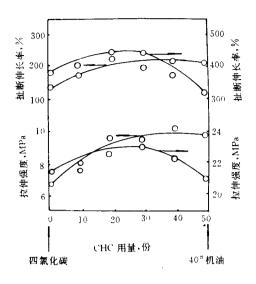


图 5 不同并用比的 NBR-40/CHC 胶料在四氯化碳溶剂和 40[#] 机油中浸泡 后的物理机械性能

老化、耐四氯化碳溶剂和耐屈挠龟裂性能均比硫黄硫化体系、硫载体硫化体系好(过氧化物硫化体系能使 NBR-40 与 CHC 产生共交联)。树脂硫化体系的撕裂强度、回弹值较大,耐四氯化碳溶剂性能较好,但拉伸强度低,扯断永久变形大,耐屈挠性能差,且硫化时间长。

2. 5 炭黑品种对 NBR-40/CHC 并用胶料性 能的影响

对中超耐磨炭黑、高耐磨炭黑、槽法瓦斯炭黑、通用炭黑、快压出炭黑和半补强炭黑进行对比实验,实验结果见表 3。由表 3 看出,中超耐磨炭黑胶料的拉伸强度最高,且综合性能较好;高耐磨炭黑胶料的综合性能也较好;槽法瓦斯炭黑胶料的撕裂强度特别高;通用炭黑、快压出炭黑和半补强炭黑胶料的弹性较好。

3 结论

- (1)NBR-40 与 CHC 的相容性好。
- (2)随 NBR-40/CHC 并用比减小,胶料

LILL AL	硫化体系			14. 44.	硫化体系				
性能	硫黄 ¹⁾	硫载体2)	过氧化物3)	树脂4)	性能		硫载体2)	过氧化物3)	树脂4)
硫化时间(160 C)					邵尔 A 型硬度,度	88	87	77	94
min	8	17	24	42	回弹值,%	9.0	9.5	9.5	11.0
拉伸强度,MPa	18.7	20.0	23.9	12.4	老化系数	1.2	1.0	0.93	0.93
扯断伸长率,%	398	393	455	308	四氯化碳溶剂浸泡 24h	后			
扯断永久变形,%	15	12	11	18	拉伸强度,MPa	5.4	5.9	8.5	3.6
邵尔 A 型硬度,度	84	83	85	89	扯断伸长率,%	210	217	232	181
撕裂强度,kN·m-1	44.7	45.7	40.2	51.9	扯断永久变形.%	14.7	19.3	11.7	15.5
回弹值,%	7.9	8.6	9.0	10.0	重量变化率.%	67.8	55.2	60.0	38.6
屈挠次数,万次	0.5	3.3	13.0	0.15	40#机油中浸泡 72h 后				
100 C×48h 热空气箱	毛化后				拉伸强度,MPa	17.0	19.4	23.4	12.3
拉伸强度,MPa	21.9	19.8	22.2	11.5	扯断伸长率,%	320	375	460	243
扯断伸长率,%	200	333	336	183	扯断永久变形 %	18.7	8.5	11.6	12.7
扯断永久变形,%	4.5	9.5	10.3	9.8	重量变化率.%	1.04	0.60	0.04	0.95

表 2 不同硫化体系对胶料物理机械性能的影响

注:1)硫黄/促进剂 CZ/四氧化三铅/促进剂 NA-22 1.5/1.0/5.0/1.5; 2)促进剂 TMTD 促进剂 CZ/四氧化三铅/促进剂 NA-22 3.5/0.5/5.0/1.5; 3)DCP/硫黄/四氧化三铅/促进剂 NA-22 1.5/0.3/5.0/1.5; 4)2402 树脂 30.0。

	• • • • • • • • • • • • • • • • • • • •					
	中超耐磨炭黑	高耐磨炭黑	槽法瓦斯炭黑	通用炭黑	快压出炭黑	半补强炭黑
硫化时间(160℃) min	27	28	24	5	5	5
拉伸强度,MPa	28.9	24.0	23.9	17.4	20.6	23.0
扯断伸长率,%	334	244	455	314	260 •	298
扯断永久变形,%	7.3	5.4	10.8	5.0	4.4	8.0
邵尔 A 型硬度·度	84	83	85	78	82	83
撕裂强度,kN・m ⁻¹	32.2	28.5	40.2	26.1	26.6	29.4
回弹值,%	11.0	11.0	9. 0	14.0	12.5	11.5
四氯化碳溶剂浸泡 24h 后						
拉伸强度,MPa	7.8	9.4	8.5	8. 9	10.7	8.9
扯断伸长率,%	165	173	233	187	177	1,73
扯断永久变形,%	3.5	9.6	11.7	10.0	7.3	9.3
重量变化率,%	59.4	58.0	60.0	61.4	60.6	56.3
40# 机油浸泡 72h 后						
拉伸强度,MPa	25.8	24.0	23. 4	16.6	20.5	21.2
扯断伸长率,%	312	243	460	277	263	280
扯断永久变形,%	8.0	4.3	11.6	3.3	5.0	5.5
重量变化率,%	0.56	0.05	0.04	0.27	0.19	0.085

表 3 炭黑品种对 NBR-40/CHC 并用胶料物理机械性能的影响

注: 炭黑用量 6; 硫化体系: DCP/硫黄/四氧化三铅/促进剂 NA-22 1.5, 0.3 5.0 1.5。

耐四氯化碳溶剂性能提高;并用比为 70/30 时,胶料耐 40[#]机油的性能最佳。

(3)NBR-40/CHC 并用比为 80/20 时, 胶料的综合物性能较好。

(4)并用胶料的硫化体系选择过氧化物

DCP/硫黄/四氧化三铅/促进剂 NA-22 最佳。

(5)并用胶料适合选择中超耐磨炭黑作 补强剂。

收稿日期 1995-05-12

Study on NBR-40/CHC Blend

Liu Yuzhen, Wang Jun and Zhou Yousheng
(Qingdao Institute of Chemical Technology 266042)

Abstract A study on NBR-40/CHC blend was made and the good compatibility between them was found. The compound showed good comprehensive physical properties when the blending ratio of NBR/CHC was 80/20; the compound showed excellent engine oil resistance when the blending ratio was 70/30; the carbon tetrachloride resistance improved with the increase of the CHC level in the blend. The optimum curing system was peroxide (DCP)/sulfur/lead tetraoxide/accelerator NA-22 system and MSAF was preferable reinforcing agent.

Keywords NBR, CHC, blend

	1994 年世	界橡胶工业前 2	5 家公司的	销售额与利润口	百万美			
序号	公司(总部)	橡胶产品销售额	总销售额	橡胶产品销售额 所占比例,%	总利润	利润率,%		
1	普利司通(日本)	12762. 0	15563. 0	82. 0	309.3	2.0		
2	米西林(法国)	10881.0	12090.0	90.0	245.0	2.0		
3	周特异(韓国)	10720. 0	12288. 2	87.1	5 67. 0	4.6		
4	大陆(德国)	5019.5	6096.5	82.3	43.7	0. 7		
5	住友(日本)	4293.8	4770.9	90.0	·未得到	未得到		
6	横溪(日本)	3480. 4	3702.5	94.0	20.4	0.6		
7	皮列里(意大利)	2813. 1	6189.5	45.4	92. 9	1.5		
8	东洋²⁾(日本)	_	_			_		
9	BTR(英国)	2027.5	13931.0	14.6	1311.8	9. 6		
10	库珀轮胎(美国)	1389.1	1403.0	99.0	128.5	9. 2		
11	哈钦森(法国)	1267. 2	1490.8	85.0	101.9	6.8		
12	盖茨(美国)	1241.0	1460.0	85.0	未得到	未得到		
13	弗罗伊登贝格(德国)	1174.6	3024.7	38.8	81.5	2. 7		
14	NOK(日本)	1144.2	1760. 3	65.0	未得到	未得到		
15	太平洋登录普(澳大利亚)	1046. 4	4976.4	21.0	219.2	4. 4		
16	Mark IV(美国)	1000.0	1603.3	62. 4	66.8	4.2		
17	韩国(韩国)	996. 9	1049.4	95.0	未得到	未得到		
18	锦湖(韩国)	847. 4	1059.3	80.0	未得到	未得到		
19	大津(日本)	820.6	820.6	100.0	未得到	未得到		
20	东海 ²⁾ (日本)		_	_	_	_		
21	丰田五姓2)(日本)	_	_	_	_			
22	标准产品(美国)	771.0	872.4	88. 4	33.0	3.8		
23	莱尔德(英国)	759. 2	1122. 3	68.0	26. 3	2.3		
24	班达克(美国)	596. 2	650. 6	92.0	94.0	14.4		
25	通用公司(美国)	574.2	1740.0	33.0	(13.0)	-		

注:1)美元按年平均货币兑换率计算:2)印刷时未得到销售额数据:表中排序是估计的。

黄丽萍译自美国"Rubber & Plastics News",1995,7,17,P23