自动开模平板硫化机的开模机构

李纪生 (湖州橡胶机械厂 313017)

摘要 介绍了自动开模平板硫化机的主要部件——开模机构的功能、结构和工作原理。该机构借助油缸的水平推力实现模型进出以及翻模动作。对该机构的翻模运动规律作了理论分析。 关键词 平板硫化机,开模机构

普通平板硫化机模具的拉出、开模、合模、模具推进等均为手工操作,自动化程度低,工人劳动强度大,故推出自动开模机构。

1 自动开模机构的结构及动作原理

自动开模平板硫化机的开模机构由设置 在上、下热板之间的模型室(上、下模型板及 其连接件的组件)、连杆、上下导轨、挂钩等组 成。上模固定在上模型板下面,下模固定在下模型板上面。在主机前面设有一个工作台,见图 1。

当主活塞推动平台、下模型板上升时,模型室闭合并继续上升,即合模硫化。当主活塞下降时,平台、模型室随着下降,降到与上模型板连接的轴承与上导轨接触,同时装有轴承的连杆将上模型板托住,使上模型板停止

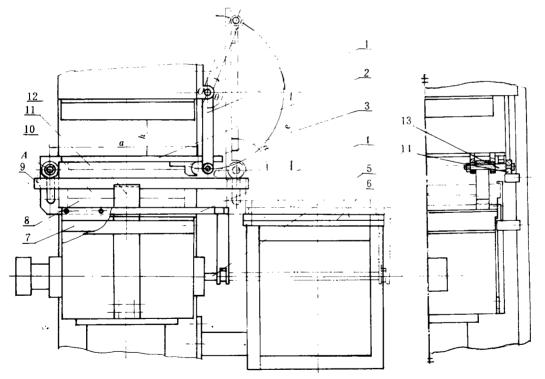


图 1 自动开模平板硫化机的开模机构

1···连杆:2···上模型板:3···挂钩:4···下模型板:5···推出缸活塞杆:6···工作台:7···下导轨:8···下模: 9···上导轨:10···中模:11 · 上模:12···开中模拉钩:13···轴:14···轴承 下降并保持水平。而下模型板与下热板、平台有活络连接,随主活塞继续下降,这样就完成了上、下模具的开模动作。当主活塞下降到底时,固定在平台中央的推出油缸将模型室水平推出到工作台上;在水平推出的同时,上模型板在上导轨和连杆的作用下,将上模型板翻转90°角。这样就完成了二开模模具开模、推出、翻转的动作过程,见图2。

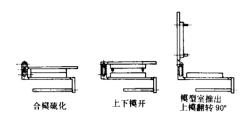


图 2 二开模动作顺序图

如果是三开模结构,在上、下模具之间还有中模。上、中模的分离是在机内进行的:在主活塞下降到和上模型板连接的轴承与上导轨接触,与连杆一起把上模型板水平托住后,上模型板停止下降并保持水平,主活塞继续下降,下模型板跟着下降,固定在平台两侧的开中模拉钩将中模拉下,这样上模和中模分离。主活塞和平台下降到底,水平油缸将中、下模随着下模型板被推到工作台上,工作台下有一个顶出油缸,通过辅助机构将中模顶起,使中、下模分离,顶出缸继续顶起,把中模翻转60°。而上模如前所述,被推出并翻转90°,见图3。

2 上模型板翻转运动的分析

为了分析上模型板翻转运动,把图 1 中 上模型板、连杆的运动规律用图 4 表示出来。

在图 4 中,连杆 OC(即曲柄)的铰支点 O 固定在平板硫化机的上横梁上,OC 可以绕 O 点作 180° 回转,轴承 A 通过轴与上模型板铰接(见图 1),并能在上导轨上滚动。在推出油缸的活塞杆作用下,当推出的行程分别为 $\Delta S_1, \Delta S_2, \Delta S_3, \dots$ 时,轴承 A 分别滚动到 A_1 ,

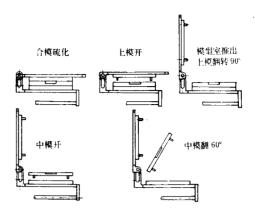


图 3 三开模动作顺序图

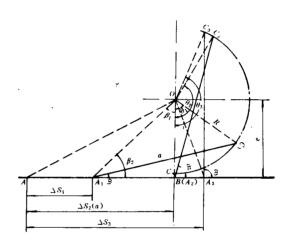


图 4 上模型板连杆的运动过程示意图

 A_2 , A_3 ……, C 点以半径 R 绕 O 点转动到 C_1 , C_2 , C_3 ……, 形成 θ_1 , θ_2 , θ_3 ……的转角,上模型板与水平面的夹角 α 从 0° 转到 α_1 , α_2 , α_3 ……, 这样就实现了翻模动作。由图 4 可知,由曲柄 (OC)、上模型板 (α) 、上导轨及轴承 A 组成了偏心距为 e 的偏心非整转的曲柄滑块机构。通常,曲柄滑块机构的主动件为曲柄,而这套翻模机构的主动件是滑块。根据工作要求, α $\leq 90^\circ$,即上模型最大翻转角度为 90° 。

2.1 推出行程 ΔS 与曲柄转角 θ 及上模型板 转角 α 之间的关系

当上模型板铰接支点轴承 A 在油缸推动下,平移 ΔS_1 到 A_1 点时,C 点到达 C_1 点。由 $\triangle A_1OB$ 可知

$$\beta_1 = \operatorname{arctg} \frac{a - \Delta S}{e}$$

$$\beta_2 = \operatorname{arcctg} \frac{a - \Delta S}{e}$$

$$OA_1 = \frac{e}{\operatorname{sinarcctg} \frac{a - \Delta S}{e}}$$

式中 a---A₁C₁(上模型板铰支点轴承 A 中心到挂钩圆弧中心的距离, 对于确定的设计,a 是定值);

ΔS----推出行程;

e---偏心距(定值);

R---曲柄半径(定值,根据结构要 求, $e \ge R$)。

由 $\triangle A_1OC_1$ 可知

$$\cos \angle A_1 OC_1 = \frac{OA_1^2 + R^2 - a^2}{2OA_1 \cdot R}$$

$$= \frac{\left[\frac{e}{\text{sinarcetg}} \frac{a - \Delta S}{e}\right]^2 + R^2 - a^2}{\frac{2R \cdot e}{\text{sinarcetg}} \frac{a - \Delta S}{e}}$$

$$= \frac{e^2 + (R^2 - a^2)(\operatorname{sinarcctg} \frac{a - \Delta S}{e})^2}{2R \cdot e \cdot \operatorname{sinarcctg} \frac{a - \Delta S}{e}}$$

$$\operatorname{sin} \angle \operatorname{OA}_1 \operatorname{C}_1 = \frac{R \cdot \operatorname{sin} \angle A_1 \operatorname{OC}_1}{a}$$

$$= \frac{R}{a} \operatorname{sinarccos} \frac{e^2 + (R^2 - a^2)(\operatorname{sinarcctg} \frac{a - \Delta S}{e})^2}{2R \cdot e \cdot \operatorname{sinarcctg} \frac{a - \Delta S}{e}}$$

$$= \frac{R}{a} \operatorname{sinarccos} \frac{e + (R - a^{2})(\operatorname{sinarccig} \frac{a}{e})}{2R \cdot e \cdot \operatorname{sinarccig} \frac{a - \Delta S}{e}}$$

$$\therefore \theta = A_{1}OC_{1} - \beta_{1}$$

$$=\arccos\frac{e^2 + (R^2 - a^2)(\operatorname{sinarcctg}\frac{a - \Delta S}{e})^2}{2R \cdot e \cdot \operatorname{sinarcctg}\frac{a - \Delta S}{e}}$$

$$-\operatorname{arctg}\frac{a - \Delta S}{e} \tag{1}$$

$$a = \beta_2 - \angle OA_1C_1$$
= $\operatorname{arcctg} \frac{a - \Delta S}{e} - \operatorname{arcsin} \frac{R}{a} \operatorname{sinarccos}$

$$\frac{e^2 + (R^2 - a^2)(\operatorname{sinarcctg} \frac{a - \Delta S}{e})^2}{2R \cdot e \cdot \operatorname{sinarcctg} \frac{a - \Delta S}{e}}$$
(2)

式(1)、(2)分别是 $\Delta S - \theta$ 和 $\Delta S - \alpha$ 的关系 式 $(\Delta S \neq a$ 时)。当 $\Delta S = a$ 时,

$$\theta = \arccos \frac{R^2 + e^2 - a^2}{2Re} \tag{3}$$

$$a = 90^{\circ} - \arccos \frac{a^2 + e^2 - R^2}{2ae}$$
 (4)

2.2 a,e,R 之间的关系

为了便于比较,我们分别设定 a= 497mm, e = 261mm, R = 255mm $\approx 10^{-4}$ = 255mm $497\text{mm}, e = 261\text{mm}, R = 245\text{mm}, \theta$ 和 a 在各 行程时的值以及平均角速度 ω, 和 ω, 等有关 数值根据式(1)、(2)、(3)和(4)计算于下:

a = 49	7mm•	e=261mm.		R=255mm
$\Delta S.mm$	θ 、度	$\bar{\omega}_{\theta}$,度 • \min^{-1}	α.度	ω̄α·度·min-1
0	0	0	0	0
110	25.33	0. 23	3.517	0.028
220	53.21	0.24	12.94	0.059
330	90.36	0.27	31. 89	0.097
440	131.98	0.3	60.26	0. 137
497	148.83	0. 299	74.60	0.150
550	156.35	0. 284	84.30	0.153
595	157.86	0. 265	90. 2	0.151
a = 497	mm.	e=261mm,		R = 245 mm
ΔS , mm	θ ,度	ω,度·min-1	α ,度	ω _α ,度·min ¹
ΔS,mm 0			a,度 0	
0	0		0	0
0 110	0	0 0. 238	0 4.76	0 0. 043
0 110 220	0 26. 23 56. 35	0 0. 238	0 4.76 14.597	0 0. 043 0. 066
0 110 220 330	0 26. 23 56. 35 94. 18	0 0. 238 0. 256	0 4. 76 14. 597 34. 14	0 0. 043 0. 066 0. 103
0 110 220 330 440	0 26. 23 56. 35 94. 18 139. 7	0 0. 238 0. 256 0. 285	0 4.76 14.597 34.14 64.3	0 0. 043 0. 066 0. 103 0. 146
0 110 220 330 440 497	0 26. 23 56. 35 94. 18 139. 7 158. 34	0 0. 238 0. 256 0. 285 0. 318	0 4. 76 14. 597 34. 14 64. 3 79. 52	0 0. 043 0. 066 0. 103 0. 146 0. 16
0 110 220 330 440 497 550	0 26. 23 56. 35 94. 18 139. 7 158. 34 164. 26	0 0. 238 0. 256 0. 285 0. 318 0. 319	0 4. 76 14. 597 34. 14 64. 3 79. 52 88. 44	0 0. 043 0. 066 0. 103 0. 146 0. 16

比较两组数据可以看出,当a,e不变,减 小 R,相同的推出行程时, $\bar{\omega}_0$ 和 $\bar{\omega}_a$ 都增大。若 $\alpha \approx 90^{\circ}$, 当 R = 255mm 时, ΔS 为 595mm; 当 R = 245 mm 时, ΔS 为 560 mm, 这就是说, 适 当减小R,能提高 ω_a ,即能减小推出行程,这 无疑有利于提高生产效率。但是如果一味减 小 R、提高 w, 会使上模型板在翻模过程中发 生碰撞。另外,如果 R 过小,开模时为了使上 模型板保持水平、曲柄端的轴承和在上导轨 滚动的轴承不易配制,所以 R 尺寸必须用作 图法加以验证。

e一般应大于或等于 R。热板间距确定以后,如果偏心距 e 太小,上模型板在推出和翻转过程中也会与上热板发生碰撞,故上热板至上模型板之间的间距 h 受 e 和 a 的限制,因此在设计时,初步方案确定后,也必须用作图法加以验证。

a 与平板硫化机的热板有关,热板的前后尺寸大,a 也相应增大。热板尺寸一旦确定,a 可定为热板前后尺寸的 1.1—1.2 倍。实际上,在设计开模机构时,a 是首先确定的尺寸。根据偏心非整转曲柄连杆机构的要求,

a < e + R.

3 结语

自动开模平板硫化机与普通平板硫化机 相比,除了具有普通平板硫化机的所有功能 外,还具有自动开模、模型推出及上模翻转、 合模、模型退回等功能,自动化程度高,从而 可以有效地提高生产效率和延长模具寿命, 减轻工人的劳动强度,非常适于大模具、多模 腔的生产工况,它是普通平板硫化机更新换 代的机型。

收稿日期 1994-11-05

kt

全球生胶消耗量及预测	kt

地区(国家)	1993年	1994 年	1995年	1999 年
北美	3831	1041	4095	4183
西欧	2873	3064	3158	342 3
亚洲及大洋洲	3878	4090	4225	4783
拉丁美洲	778	815	840	985
非洲及中东	303	316	327	366
中欧	290	315	337	442
CIS	994	520	960	1240
中国/中央计划				
经济国家	1203	1287	1377	1805
合计	14149	14447	15259	17226

译自英国"European Rubber Journal", 177[4],6(1995)

全球合成橡胶消耗量及预测 k

地区(国家)	1993 年	1994 年	1995 年	1999 年
北美	2773	2935	2984	3080
西欧	2028	2164	2228	2413
亚洲及大洋洲	1888	2020	2105	2443
拉丁美洲	531	561	580	705
非洲及中东	120	128	133	151
中欧	230	250	268	351
CIS	944	480	850	1140
中国/中央计划				
经济国家	453	485	519	680
合计	8967	9022	9666	10962

译自英国"European Rubber Journal"。 177[4],6(1995)

全球各种橡胶消耗量及预测

工小口小小小人们也是大汉人					
胶	种	1993 年	1994年	1995 年	1999 年
丁苯橡	₹	2579	2589	2774	3085
丁苯胶	乳	387	400	413	467
羧基胶	乳	1374	1473	1509	1670
聚丁二	烯橡胶	1417	1427	1541	1726
乙丙橡	胶	596	653	679	750
氯丁橡	胶	237	252	258	293
丁腈橡	胶	245	264	281	325
丁腈胶	乳	53	5 5	56	66
其它合	成橡胶	1403	1176	1369	1549

译自英国"European Rubber Journal", 177[4],6(1995)

全球天然橡胶消耗量及预测 kt

地区(国家)	1993年	1994年	1995 年	1999 年
北美	1058	1106	1111	1103
西欧	845	900	930	1010
亚洲及大洋洲	1990	2070	2120	2340
拉丁美洲	247	254	260	280
非洲及中东	183	188	195	215
中欧	60	65	69	91
CIS	50	40	50	100
中国/中央计划				
经济国家	750	803	859	1125
合计	5182	5425	5594	6264

泽自英国"European Rubber Journal", 177[4],6(1995)