估算橡胶助剂溶解度参数用 基团贡献值的研究

李俊山
(青岛化工学院 266042)

孙 军
(荣成市橡胶厂 264300)

张大龙
(烟台第二橡胶厂 264000)

摘要 应用化合物的摩尔基团可加性原理·研究了估算橡胶助剂溶解度参数用的摩尔体积、摩尔内 聚能、摩尔折射度和摩尔引力常数的基团贡献值。在现有文献的基础上·还扩充了 24 种基团的 110 个贡献值、扩充后的基团贡献值·可分别用 Fedors·Lawson 和 Hansen 法估算出迄今为止的大部分橡胶助剂 的溶解度参数

关键词 橡拟助剂,溶解度参数,化学基团贡献值

采用 Fedors, Lawson 和 Hansen 方法估算橡胶助剂的溶解度参数(δ), 是依据橡胶助剂分子的摩尔体积(V)、摩尔内聚能(E_{coh})、摩尔折射度(R_{LL})、色散力分量基团贡献值(F_{pl})和氢键力分量基团贡献值(E_{hl}),应用化合物的摩尔基团的可加性原理进行估算的。其原理与方法前文[1]已作了较为详细的报道[1],但没能给出具体基团的贡献值,无法计算橡胶助剂的创出具体基团的贡献值,无法计算橡胶助剂的创出,因此研究用于估算橡胶助剂。的基团贡献值是一项基础性工作,是估算橡胶助剂。的关键。

现有文献^[2-4]已给出了一般化合物的基团贡献值。但这些数据没能覆盖所有橡胶助剂化学基团的贡献值。为满足估算橡胶助剂δ的需要,本文筛选了现有文献的化学基团贡献值,同时又扩充了这些文献没有给出的化学基团贡献值。

1 橡胶助剂摩尔体积的确定

用上述三种方法估算橡胶助剂的 δ ,首先要使V成为已知。V可以用分子量M和密

度 ρ 的关系式($V=M/\rho$)求取;也可以通过橡胶助剂化学基团对摩尔体积的贡献值 V_i 求取: $V=\sum V_i$ 。本文采用后者确定 V。

一般化合物的 V_i 已由 Fedors 给出,但 Fedors 没有给出某些橡胶助剂化学基团的 V_i 。对于这些化学基团的 V_i ,本文按化学基团贡献值的可加性原理^[5],由已知化学基团的 V_i ,其中环己基、萘基等 6 种化学基团的 V_i ,均系用加和方法进行的扩充;其中=S 因无法利用加和方法扩充,而选用了类似基团—S—的 V_i ,替代=S 的 V_i 。根据估算橡胶助剂 δ 需要,从 Fedors 给出的 V_i 中筛选出的 V_i 和扩充的 V_i (括号内)—并列人附表中。

2 橡胶助剂化学基团贡献值的扩充

在估算橡胶助剂 δ 的条件中,除需要确定 V 外,还必须知道橡胶助剂化学基团的各种贡献值。采用 Fedors 法需已知 E_{coh} ;采用 Lawson 法需已知 R_{LL} ;采用 Hansen 法需已知 F_{di} , F_{pi} 和 E_{hi} 。大量橡胶助剂的化学基团贡献值可从现有文献中查出,但也有为数不少

附表 橡胶助剂的化学基团贡献值

序号	基团 CH ₃	Fedors			Hansen					
		V	E _{coh}		$R_{\rm LL}$, cm ³ .	mol^{-1}		$F_{di}^{1)}$	$F_{ m pi}^{1 angle}$	$E_{\rm h}^{2)}$
1		33.5 4710		5. 644 ³⁾	5. 644 ³⁾ 5. 470 ⁴⁾				0	0
2	$-CH_2-$	16. 1	4940	4. 6493)	4. 5004)	_	_	420 270	0	0
3	—CH<	-1.0	3430	3. 616 ³)	3. 5204)		_	80	0	0
4	XX	19. 2	1470	2. 580 ³)	2. 2904)			- 70	0	0
5	$=CH_2$	28. 5	4310	5. 470 ³)			_	400	0	0
6	-CH=	13.5	4310	4. 440 ³)				200	0	0
7	>c=	-5.5	4310	3. 410 ³				70	0	0
8	-C≡	6.5	7070	$(2.725)^{3}$	(1.478)4)	~-		(850)	(0)	(0)
9	苯基(一取代)	71. 4	31940	25. 510 ³)		_		1430	110	0
10	苯基(二取代)	52.4	31940	24. 7205)	25. 000 ⁶	25. 0307)		1270	110	0
11	苯基(三取代)	33. 4	31940	24. 400 ³				(1140)	(110)	(0)
12	苯基(四取代)		31940	23. 8503)		_	-	(1010)	(110)	(0)
	· — · · · •	14.4		(23, 260)3)			_	(880)	(110)	(0)
13 14	苯基(五取代) 苯基(六取代)	4. 6 23. 6	31940 31940	$(23.260)^{3}$ $(22.670)^{3}$		_	_	(750)	(110)	(0)
		- 23. 6 (95. 5)				_	_	(1620)	(0)	. (0)
15	环己烷基(一取代)	(78.4)	(29180)	26. 6863)					(0)	(0)
16	环己烷基(二取代)		(27670)	(25. 653)3)	_			(1430)		
17	萘基(取代)	(99.0)	(53570)	44. 6203)	-	_		(2130) (2000)	(110)	(0) (0)
18	萘基(二取代)	(80.0)	(53570)	(43. 590)3)	0.1009)				(110)	
19	五元以上环	16.0	1050	-0.130 ⁸)	-0.180^{9}	. –		190	0	0
20	三元或四元环	18. 0	3140			. 0.(011)		190	0	0
21	环中共轭	-2.2	1670	1. 6503)	1. 76010)	1. 94011)		0	0	0
22	F 单个的	18.0	4190	0. 8983)	_	_	_	220	<u>-</u>	
23	-F 双取代	20. 0	3560	0.8983)	_		_	220	_	
24	-F三取代	22. 0	2300	0.8983)			_	220		_
25	-CF ₂ -	23. 0	4270	$(4.376)^{3}$				(370)	(0)	(0)
26	-C F ₃	57. 5	4270	$(5.274)^{3}$	_	_		(590)	(0)	(0)
27	-CI 单个的	24.0	11550	6. 045 ¹²	6. 02313)	5. 92914)	5. 604)	450	550	400
28	-CI 双取代	26.0	9630	6. 04512)	6. 02313)	5. 92914)	5. 604)	450	550	400
29	−Cl 三取代	27. 3	7530	6. 04512)	6. 02313)	5. 92914)	5. 604)	450	550	400
30	-Br 单个的	30.0	15490	8. 89712)	8. 956 ¹³⁾	9. 03414)		550	_	_
31	-Br 双取代	31.0	12350	8. 89712)	8. 956 ¹³⁾	9. 03414)	_	550		_
32	-Br 三取代	32. 4	10670	8. 89712)	8. 956 ¹³⁾	9. 03414)	_	550	_	_
33	-CN	24.0	25530	5. 528 ³¹	_	_	_	430	1100	2500
34	-OH(取代)	10.0	29800	2. 5513)	2. 45813)	2. 45314)	2. 274)	210	500	20000
35	-OH(二取代)	13.0	21850	2. 55112)		2. 45314)		210	500	20000
36	-0-醚	3. 8	3350	1. 58715)		1. 774)		100	400	3000
37	=O ,	(16.3)	(13060)	$(1.377)^{15}$		$(1.68)^{4}$	_	(220)	(770)	(2000)
38	HCO-醛	22. 3	21350	5. 83 ³⁾				470	800	4500
39	CO酮	10.8	17370	4. 787151	4.53316)	5. 0904)		290	770	2000
40	COOH	28. 5	27630	7. 212^{3}				530	420	10000
41	-COO-酯	18.0	18000	6. 23715)	6. 37518)	6. 20616)	6. 714)	390	490	7000
42	$-NH_2$	19.2	12560	4. 3553)	4. 894)			280	_	8400
43	-NH-	4.5	8370	3. 58531	4.534)			160	210	3100
44	− N<	-9.0	4190	2.8033)	4. 05 ⁴)			20	800	5000
45	-N=	5.0	11720	$(2.803)^{3)}$	$(4.05)^{4}$			(20)	(800)	(5000)
46	-NHNH-	16	16740	$(7.17)^{3}$	(9.06)4)			(320)	(297)	(6200)

	_	
1.000	-	

序号	基团	Fedors		Lawson (Goedhart)				Hansen		
		V cm ³ • mol ⁻¹	E_{coh} J • mol^{-1}		$R_{\rm LL}$, cm ³ .	mol-1		F	$F_{ m pi}^{1)}$	$E_{\rm hi}^{2)}$
47	−CONH ₂	.17. 5	41860	(9.142) ³⁾	(9. 423) ⁴⁾	_		(570)	(770)	(10400)
48	-con<	-7.7	29510	$(7.590)^{3}$	(8.583)4)			(310)	(1110)	(7000)
49	-NHCOO-	18. 5	26370	$(9.822)^{3)}$	(10. 908)4)			(550)	(533)	(10100)
50	-NCO	35.0	28460	$(7.590)^{3}$	$(7.463)^{4}$			(310)	(1110)	(7000)
51	C = NOH	11. 3	25120	$(8.764)^{3}$			-	(300)	(943)	(2500)
52	-NNO-	10.0	27210	$(6.983)^{3}$	$(9.223)^{4}$			(260)	(1368)	(12000)
53	-NO2(脂肪族)	24.0	29300	6.6623)		· —	_	500	1070	1500
54	-NO ₂ (芳香族)	32.0	15360	6.6623)		_	_	500	1070	1500
55	-NO₂(亚硝酸酯)	33.5	11720	6.6623)	_	_	_	500	1070	1500
56	-sH	28. 0	14440	8. 84515)	8. 7916)	9. 2704)	_	(590)	_	_
57	-s-	12.0	14150	7. 92 ³⁾	8. 074)	_	_	440		-
58	-S-S-	23.0	23860	16. 17 ³⁾	_	_		(880)		
59	=S	(12.0)	(22801)	$(14.26)^{3}$	_	-		(520)		
60	$-SO_2-$	(19.6)	(20850)	$(11.094)^{3}$	(11. 352)4)			(640)	(566)	(6000)
61	P	-1.0	9420		-		_	_	_	_
62	PO_4	28. 0	20930				_			
63	Si	0	3390		-					_
64	В	-2.0	13810	- .		_				
65	Al	-2.0	13810							
66	Sn	1.5	11300				-			_
67	Pb	2.5	17160		_			_	_	
68	Sb	8. 9	16330	_		_	_		_	-
69	Bi	9.5	21350		_	_	_	_	_	
70	Se	16.0	17160	_	_	_		_	_	
71	Te	17.4	20090		_	_	_		_	
72	Zn	2. 5	14480		_	_			_	_
73	Cd	6.5	17790	_	_	_	_	_	_	_
74	Hg	7.5	22810		_	_	_	_	_	

注:1)J^{1/2}·cm^{3/2}·mol⁻¹;2)J·mol⁻¹;3)—般情况;4)接在苯环上;5)邻位;6)间位;7)对位;8)环结构;9)环戊烷;10) 顺式;11)反式;12)伯位;13)仲位;14)叔位;15)伯硫醇或甲酯;16)仲硫醇;17)缩醛类;18)乙酯。

的化学基团贡献值没有给出。对于这些贡献 值,本文采用下述三种方法进行了扩充。

2.1 加和式扩充

根据化学基团贡献值的可加性原理,采用 Fedors 给出的 E_{coh} 扩充了环己基、萘基等 6 种基团的 E_{coh} ;采用 Goedhart 给出的 R_{LL} 扩充了环己基、苯基和 \longrightarrow 等 17 种基团的 R_{LL} ;采用 Hansen 给出的 F_{di} , F_{pi} 和 E_{hi} 扩充了一C=、苯基和环己基等 22 种基团的 F_{di} , F_{pi} 和 E_{hi} 。

2.2 逆算式扩充

以 Gardiner 估算的促进剂 TETD 的 δ

为 23. $45J^{1/2} \cdot cm^{-3/2}$ 和已知基团贡献值为基础^[6],逆推算出 = S 的 E_{coh} , R_{LL} , F_{di} , F_{pi} 和 E_{hi} 。

2.3 替代式扩充

在扩充化学基团贡献值的过程中,如上述方法都无能为力,则选用相似基团的贡献值替代。本文中-N=的 R_{LL} , F_{di} , F_{pi} 和 E_{hi} 均采用-N<的相应值替代。

为估算橡胶助剂 & 需要,从现有文献中 筛选出的和扩充(括号内)的化学基团贡献值 一并列入橡胶助剂化学基团贡献值表内。表 (下转第 423 页)

3.3 裁断及双工位卷取装置

该区段由放标志线架、帘布计长装置、裁 断机、摆架、双工位卷取和定中心装置组成。 裁断机是由一台设置在摆架上的直裁断机和 液压驱动的摆架组成,其工作顺序为:一工位 卷取卷满后停止运动,夹嘴闭合,裁刀直裁, 裁刀归位,夹嘴张开,摆架摆到垂直位置,自 动向下送布 1m,夹嘴闭合,摆架摆到第二工 位,夹嘴张开,二工位卷取开始工作。整个动 作时间少于 60s。该区段的张力由卷取电机 和后储布架牵引电机之间的速比产生。另外, 在垫布导开架上还设置了除尘系统和垫布定 中心系统。为防止胶帘布跑偏,在胶帘布进入 摆架前设置了一套光电自动定中心装置。为 便于计算产量和成本核算,在胶帘布进入摆 架前,设置了一套光电脉冲帘布计长装置,读 数可直接显示在操作台上。为便于生产管理 和提高胶帘布的导气性能,在后储布架的后 面设置了一个放标志线架,利用不同颜色的 棉纱线来区分不同规格品种的帘线,同时利 用棉纱线的"导管"作用提高导气性能。

4 各主要区段张力的大小和调整范围

由于该设备具有各区段张力连续可调的 优异性能,根据工艺要求,可以实现压延各区 段的最佳张力匹配,使帘线的拉伸性能得到 充分的发挥。

- (1)导开区——从导开系统到前牵引电机之间。张力为500—1000N。
- (2)前储布区——从前牵引电机到干燥机之间。张力为500—2500N。
- (3)机前主张力区——从干燥机到主机 之间。张力为500—20000N。
- (4)机后主张力区——从主机到冷却机 之间。张力为500—20000N。
- (5)后储布区——从冷却机到后储布牵引电机之间。张力为500—2500N。
- (6)卷取张力区——从后储布牵引电机 到卷取牵引电机之间。张力为500—20000N。
- (7)垫布导开区——从卷取电机到导开制动器之间。张力为200—1000N。

国产 XY-4S1800A 型四辊橡胶压延机 经我厂一年多的试用证明·胶帘布的质量稳 定提高·压延精度比我厂原有的倒"L"型 四 辊压延机有大幅度提高 该设备解决了压延 工艺张力偏低的难题。由于该设备精度高·扩 布效果好·我厂实施了减小覆胶厚度措施·经 济效益十分显著。目前·该设备的β射线自动 测厚系统尚未调试投产。整个联动线停机再 启动有时出现失张现象,温度控制只是加热 介质的温度而不是辊筒表面温度,这些都是 该设备的不足之处,有待于进一步研究改进。

收稿日期 1994-01-23

(上接第395页)

内所列的各种贡献值,覆盖了大部分橡胶助剂化学基团的贡献值,它可以满足用上述三种方法估算任何一种橡胶助剂的 δ 时的需要。

参考文献

- 1 李俊山等. 橡胶助剂溶解度参数的理论估算. 橡胶工业· 1992;39(11);685
- 2 Fedors R F. A method for estimating both the solubility parameters and molar volumes of liquids. Polym. Eng.

Sci. .1974:14(2):147

- 3 范克雷维伦 D W. 许元泽等译. 聚合物的性质. 北京:科学出版社.1981:115
- 5 范克雷维伦 D W. 许元泽等译. 聚合物的性质. 北京:科学出版社.1981:34
- Gardiner J B. Curative diffusion between dissimilar elastomers and its influence on adhesion. Rubber Chemistry Technology.1968:41(5):1312

收稿日期 1995-02-25