俄罗斯丁二烯-α-甲基苯乙烯橡胶 在轮胎配方中的应用

杨树田

(辽宁轮胎厂,朝阳122009)

摘 要

将俄罗斯产的丁二烯-α-甲基苯乙烯橡胶 CK(M)C-30APK^[1](以下称俄罗斯丁甲苯橡胶)用于轮胎 胎冠胶、帘布层胶和内胎胶配方中,与吉林化学工业公司有机合成厂生产的丁苯橡胶1500(以下称吉化丁苯橡胶)进行了比较,结果表明,两种胶料的轮胎半成品、成品物理性能均十分相近,轮胎耐久性能达到 DOT 标准;而采用俄罗斯丁甲苯橡胶替代吉化丁苯橡胶,可降低原材料成本9.4%。

关键词:丁苯橡胶,丁二烯-α-甲基苯乙烯橡胶,胎冠胶,内胎胶

1 前言

为了降低轮胎生产成本,我厂在轮胎胎 冠胶、帘布层胶、内胎胶配方中,采用俄罗斯 丁甲苯橡胶以替代吉化丁苯橡胶,对采用这 两种胶的胶料的半成品、成品物理机械性能 及轮胎成品耐久性能进行了考察。

2 基本性能试验

2.1 俄罗斯丁甲苯橡胶的基本特性

据资料[22 介绍,该俄罗斯丁甲苯橡胶的主要化学成分为: α -甲基苯乙烯 21.5%~23.5%:有机酸皂 $\leq 0.15\%$;有机酸5.8%~7.3%;挥发分 $\leq 0.35\%$;灰分 $\leq 0.6\%$ 。根据试验配方(俄罗斯丁甲苯橡胶100;硫黄 1.8;促进剂 CZ 1.2;氧化锌3:硬脂酸 1;高耐磨炭黑 50;硫化条件145 C×35min)测定的胶料物理机械性能为:生胶门尼粘度 ML(1+4)100 C 48;拉伸强度 24.5MPa;扯断伸长率 516%;300%定伸应力 13.0MPa。

2.2 俄罗斯丁甲苯橡胶与吉化丁苯橡胶的 基本性能

①试验配方:俄罗斯丁甲苯橡胶(与吉化 丁苯橡胶等量互换) 100;硫黄 2;促进剂 DM 3;氧化锌 5;硬脂酸 1.5,高耐磨炭

黑 40。

②硫化胶物理机械性能。两种胶料的物理机械性能见表1。表1结果表明,使用俄罗斯丁甲苯橡胶的硫化胶拉伸强度、扯断伸长率、撕裂强度、200%疲劳寿命均优于使用吉化丁苯橡胶的硫化胶,但生热性和耐磨耗性较差。

表1 两种硫化胶物理机械性能

测试项目	俄罗斯丁	甲苯橡胶	吉化丁	苯橡胶
硫化时间(135℃),mir	n 35	45	35	45
拉伸强度.MPa	26.9	23.7	24.9	22.7
扯断伸长率,%	620	564	484	430
300%定伸应力,MPa	13.6	10.4	11.4	14.9
扯断永久变形:%	9.8	9.9	9.6	6.8
硬度(邵尔 A),度	63	65	66	66
磨耗量(1.61km),cm3	0.19	_	0.15	
回弹率(28℃),%	40	_	40	
撕裂强度,kN/m	7040	_	2974	-
压缩生热, C	29.7		24.5	
200%疲劳寿命,次	7040	_	2974	
密度,Mg/m³	1.13	-	1.13	~
100 C × 48h 老化后				
拉伸强度,MPa	19.8	19.5	17.5	16.5
扯断伸长率,%	372	368	288	260

3 两种橡胶在轮胎配方中的应用对比

3.1 胎冠胶配方

用于轮胎(9.00-20-14PR)胎冠胶的试

验配方为:俄罗斯丁甲苯橡胶(与吉化丁苯橡胶等量互换) 10;天然橡胶 50;顺丁橡胶 40;硫黄 1.2;促进剂 MDB 1.1;氧化锌 4;硬脂酸 3;防老剂 WH-02 1.5;防老剂4010NA 1.0;石蜡 1;炭黑 50;芳烃油 5;RX-90树脂 2。

胶料的物理机械性能结果见表2。表2结果表明,两种胶料的物理机械性能均十分相近。

表2 两种胎冠胶料的物理机械性能

测试项目	俄罗斯丁甲	苯橡胶	吉化丁	苯橡胶		
硫化时间(142°C), min	a 30	40	30	40		
拉伸强度,MPa	21.3	20.6	20.4	22. 1		
扯断伸长率,%	560	568	516	5 76		
300%定伸应力,MPa	10.5	9.7	10.1	10.4		
扯断永久变形,%	16. 4	16.4	17.2	18.4		
邵尔 A 型硬度,度	65	65	64	64		
磨耗量(1.61km),cm ³	-	0.11		0.12		
回弹性(28℃),%		38	-	38		
200%疲劳寿命,次	_	14036	_	9905		
压缩生热,℃	_	31.7		31.7		
撕裂强度,kN/m		106.5	_	106.3		
密度·Mg/m³	_	1.12		1.12		
100 € × 48h 老化后						
拉伸强度,MPa	16.8	3 16.5	17.0	17.0		
扯断伸长率,%	384	372	372	380		
硫化特征值(147℃)						
t_{10} , min		5.9	4	. 3		
t ₉₀ , min		10.9	1	2.0		

3.2 帘布层胶配方

用于帘布层胶的试验配方为:俄罗斯丁甲苯橡胶(与吉化丁苯橡胶等量互换) 10; 天然橡胶 80; 顺丁橡胶 10; 硫黄 2.1; 促进剂 MDB 1.1; 促进剂 TMTD 0.05; 氧化锌 5; 硬脂酸 2.5; 防老剂 WH-02 1.5; 防老剂4010NA 1.5; 炭黑 25; 芳烃油 10。

两种帘布层胶胶料的物理机械性能结果 见表3。表3结果表明,采用俄罗斯丁甲苯橡胶 与采用吉化丁苯橡胶的两种帘布层胶料,其 物理机械性能也十分相近。

表3 两种帘布层胶料的物理机械性能

测试项目	俄罗斯丁甲苯橡胶	吉化丁苯橡胶
硫化时间(137℃), min	n 30	30
拉伸强度,MPa	21.7(13.9)	21.9(15.2)
扯断伸长率,%	532(329)	509(348)
300%定伸应力,MPa	8.8(12.2)	9.0(12.3)
扯断永久变形,%	21.6(8.8)	22.4(11.2)
邵尔 A 型硬度,度	59(65)	59(65)
撕裂强度,kN/m	79.3(57.7)	81.6(60.9)
压缩生热,℃	12.0()	12.3(-)
回弹性(28℃),%	60(57)	60(56)
200%疲劳寿命,次	7242(4364)	12054(3993)
H 抽出力·N	158.0(138.2)	172.4(154.6)
密度,Mg/m³	1.09	1.09
硫化特征值(147℃)		
t_{10} , min	6. 9	7. 2
t ₉₀ , min	12. 2	12.8

注:括号内为100 C×48h 老化后的试验数据。

3.3 成品轮胎性能对比

两种胶料配方的成品轮胎(9.00-20-14PR)的耐久性能试验结果见表4;耐久性能试验后做解剖试验的数据见表5。

表4的结果表明,两种轮胎的行驶总时间 均超过77h,达到 DOT 标准。表5结果表明, 在轮胎配方中用俄罗斯丁甲苯橡胶等量代替 吉化丁苯橡胶后,对轮胎耐久性能试验后的 成品物理机械性能无影响。

表4 成品轮胎耐久性能的试验结果

测试项目	俄罗斯丁甲苯橡胶	吉化丁苯橡胶
总行驶时间·h	91	83
总行驶里程,km	5005	4565
47h 检查结果	无损	无损
胎冠部温度, 0	33	56
花纹沟温度,♡	48	63
77h 检查结果	无损	无损
胎冠部温度,C	42	68
花纹沟温度, C	61	74
83h 检查结果	_	胎肩鼓包
胎冠部温度,0	_	58
花纹沟温度, €	_	80
91h 检查结果	胎肩鼓包	_
胎冠部温度,℃	42	
花纹沟温度, €	65	

表5 成品轮胎耐久性试验后的物理机械性能

测试项目	俄罗斯丁甲苯橡胶	吉化丁苯橡胶
胎冠部位(上层)		*** ***
拉伸强度,MPa	20.8	20- 8
扯断伸长率,%	452	439
300%定伸应力,MI	Pa 11.9	12.2
扯断永久变形,%	8	7
磨耗量(1.61km),c	m ³ 0.18	0.10
邵尔 A 型硬度,度	61	63
胎体粘合强度,kN/m		
2-3层	5.9	6. 6
3-4层	6.1	6.2
45层	6.1	5.7
5-6层	6.3	5.3
6-7层	5.8	5.8
7—8层	7. 6	6.5

3.4 内胎胶配方

用于内胎(9.00-20)胶的试验配方为: 俄罗斯丁甲苯橡胶(与吉化丁苯橡胶等量互换) 40; 天然橡胶 60; 硫黄 1.0; 促进剂 CZ 1.0; 促进剂 TMTD 0.1; 氧化锌 5; 硬脂酸 2; 防老剂 WH-02 1.5; 防老剂 A 1.0; 炭黑 45; 芳烃油 9; 石蜡 1.5。

胶料的物理机械性能结果见表6;采用 GB 7036-89标准测试的内胎成品性能见表 7。

表6结果表明,用40份俄罗斯丁甲苯橡胶 代替吉化丁苯橡胶后,其胶料性能除压缩生 热略高一点外,其它无明显变化。

表6 两种内胎胶料的物理机械性能

测试项目	俄罗斯丁甲苯橡胶	吉化丁苯橡胶
硫化时间(142℃),mir	25	2 5
拉伸强度,MPa	19.1(16.4)	20.2(16.8)
扯断伸长率,%	692(420)	636(456)
扯断永久变形,%	24.4(8.0)	21.2(10.4)
撕裂强度,kN/m	105. 39(88. 60)	98.40(72.90)
回弹性(28℃),%	40(43)	42(43)
邵尔 A 型硬度,度	59(63)	60(63)
200%疲劳寿命,次	17304	15311
500% 定伸应力, MPa	13.0	13.8
压缩生热,℃	31.4	29.2
密度,Mg/m³	1.11	1.11
硫化特征值(147℃)		
t_{10} , min	9.8	8-9
t_{90} , min	_	18.7

注:括号为100℃×48h 老化后试验数据。

表7 两种内胎成品物理机械性能

俄 罗			甲苯橡胶			吉化丁苯橡胶		
測 试 项 目	纵	向	横	向	纵	向	横	向
	上模	下模	上模	下模	上模	下模	上模	下模
拉伸强度.MPa	18.0	18. 7	16. 2	16.8	18.0	18.0	17.6	15.9
500%定伸应力,MPa	10.8	10.4	9.0	9.0	11.5	11.1	9.9	9.6
扯断伸长率,%	706	724	715	722	656	623	680	668
热拉伸变形,%	19	. —	_	_	23		_	_
邵尔 A 型硬度,度	50	_	<u>.</u>	_	48	_		_
胶垫与胎身粘合强度,kN/m	8.4	_	_	-	5. 7		_	-
气门嘴与胶垫粘合强度,kN/m	5.2		_	_	4.9	_		-
脆性温度(-40℃),℃	无裂纹	_	_	_	无裂纹	_	_	
密度,Mg/m³	1.12	_		_	1.11	_	_	_
接头部位								
拉伸强度,MPa	14.2				14.0			
扯断伸长率,%	588				636			

4 结论

①在轮胎配方中采用10份俄罗斯丁甲苯 橡胶和在内胎配方中采用40份俄罗斯丁甲苯 橡胶,对半成品、成品的物理机械性能及耐久性试验性能影响甚微,可在无需调整原配方 (下转第41页) 内夹一根裸铜丝,如图2所示。

②将上述魔带垂直安装在待消静电物体 通过的过道上(最好同时安装几处)和收卷

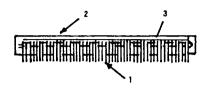


图 2 消静电魔带安装示意图 1-消静电魔带;2-木板;3-裸铜丝

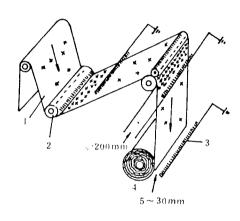


图 3 消静电魔带在生产线上的布置 1-橡胶;2-导辊;3-消静电魔带;4-卷取装置

处,如图 3 所示,消静电魔带距待消静电的物体表面 5~30mm,静电越多,距离越大。

③用金属导线将魔带可靠接地或接机器 的金属部件。

安装时应特别注意,消静电魔带应安装在橡胶上静电最多、电荷密度最大、静电电位最高的地方,这样消静电效果最好。所以它离开机器等金属部件的距离最好应大于200mm,否则会影响消静电效果。

④使用过程中应经常保持魔带清洁,如 有油污或灰尘粘污,应及时清洗。

5 消静电效果

用上述方法对橡胶生产过程中的静电进 行消除,其结果如附表所示。

附表 消静电魔带消除橡胶静电的效果

	起始静电	经第一道消静	经第二道消静		
生产工序	电位,kV	电魔带后的	电魔带后的静电		
	电拉, κ ν	静电电位,kV	电位,kV		
炼胶	9.0~20	1.0~3.0	0.7~1.0		
压延	$15\sim30$	1.0~5.0	$0.7 \sim 1.0$		
涂胶	$15\sim20$	1.0~3.0	0.7~1.0		
挤出	10~30	1.0~5.0	0.7~1.0		

从以上数据可以看出,该消静电魔带的消静电效果十分明显,可以将几万伏静电立刻消除到 1kV 以下,此时就不会再产生静电电击、静电火花等静电危害,确保橡胶安全生产。

(收稿日期:1993-09-07)

(上接第12页)

情况下,以等量俄罗斯丁甲苯橡胶替代原配 方中的吉化丁苯橡胶。

②在轮胎配方中以等量俄罗斯丁甲苯橡胶替代吉化丁苯橡胶,可降低原材料成本9.4%(前者单价为5800元/t,后者为6400元/t),具有一定的经济效益。

参考文献

- [1]A. B. 萨尔特阔夫,汽车轮胎现代工艺学基础,93,石油 化学工业出版社,北京,1980。
- [2]谢遂志等,橡胶工业手册第二分册,化学工业出版社,北京,1989。

(收稿日期:1993-01-05)