停放时间对胶料加工性能的影响

朱宇石,刘志国

(朝阳浪马轮胎有限责任公司,辽宁 朝阳 122009)

摘要:研究停放时间对帘布胶和垫胶门尼粘度、门尼焦烧时间和硫化特性的影响。结果表明:随着停放时间的延长, 帘布胶和垫胶的门尼粘度呈增大趋势,门尼焦烧时间先延长后缩短;帘布胶的最小转矩先增大后趋于平稳,tn呈延长趋 势, ton变化不大; 垫胶的最大转矩总体增大, 最小转矩、tun和ton变化不大; 帘布胶半成品的门尼粘度总体增大, 门尼焦烧时 间先缩短后延长,最小转矩略有增大,tn是延长趋势,tm变化不大。帘布胶合理的停放时间在4 d以内,半成品应尽量缩短 停放时间,以保证胶料性能稳定。

关键词:停放时间;帘布胶;垫胶;加工性能;门尼粘度;门尼焦烧时间;硫化特性

中图分类号:TO330.5

文献标志码:B

文章编号:1006-8171(2020)03-0174-03

DOI: 10. 12135/j. issn. 1006-8171. 2020. 03. 0174

胶料的门尼粘度、门尼焦烧时间和均匀性对 挤出加工性能、胎坏成型及硫化均有重要影响[1]。 适宜的门尼粘度能够保证挤出的流畅性、部件尺 寸的均匀性和适当的表面粘度:合适的门尼焦烧 时间能够保证挤出加工的安全性和轮胎气泡点时 间的稳定性。胶料停放时间不仅与生产调度有 关,还与胶料的门尼粘度、门尼焦烧时间和均匀性 有密切关系[2]。本工作研究停放时间对帘布胶和 垫胶门尼粘度、门尼焦烧时间和硫化特性的影响。

1 实验

1.1 主要原材料

天然橡胶(NR),SMR20,元方树胶有限公司 产品;炭黑N220和N660,江西黑猫炭黑股份有限 公司产品。

1.2 试验配方

帝布胶:NR 100, 炭黑N220 50, 氧化锌 8, 防老剂 2.5, 硫黄和促进剂 7。

垫胶:NR 100,炭黑N660 45,氧化锌 4, 硬脂酸 2,防老剂 2.5,硫黄和促进剂 4。

1.3 主要设备和仪器

BB430型密炼机, 日本神户制钢所产品;

作者简介:朱宇石(1982--),男,吉林省吉林市人,朝阳浪马轮 胎有限责任公司工程师,学士,主要从事轮胎配方设计和硫化工艺 管理工作。

E-mail: zhuyushi2001@163. com

XM370型密炼机,大连橡胶塑料机械股份有限公 司产品: MV2000型门尼粘度计, 美国阿尔法科技 有限公司产品。

1.4 试样制备

密布胶和垫胶的母胶均在BB430型密炼机中 按正常工艺生产,终炼胶在XM370型密炼机中按 正常工艺生产。帘布胶和垫胶的终炼胶在下片处 取50 cm×50 cm试样, 帘布胶半成品部件在压延 处取样。试样在室温、湿度为25%的条件下停放。

1.5 性能测试

胶料性能按相应国家标准进行测试。

2 结果与讨论

2.1 停放时间对帘布胶门尼粘度和门尼焦烧时

停放时间对帘布胶门尼粘度和门尼焦烧时间 的影响如表1所示。

表1 停放时间对帘布胶门尼粘度和门尼焦烧时间的影响

停放时间/d	门尼粘度 [ML(1+4)100 ℃]	门尼焦烧时间 t ₃ (125 ℃)/min	
1	61	14.4	
3	61	16.4	
5	62	18.4	
7	62	16.6	
11	63	16.3	
17	65	16.0	
22	65	16.7	
31	66	16.0	

从表1可以看出,随着停放时间的延长,胶料的门尼粘度呈增大趋势,门尼焦烧时间先延长后缩短并趋于稳定。

2.2 停放时间对帘布胶硫化特性的影响

停放时间对帘布胶硫化特性的影响如表2 所示。

表2 停放时间对帘布胶硫化特性(146℃)的影响

停放时间/d	$F_{\rm L}/$ (dN • m)	$F_{\rm max}/$ (dN • m)	t_{10}/\min	t ₉₀ /min
1	3.93	47.71	4.28	15.58
3	3.99	47.85	4.37	15.75
5	4.02	46.97	4.47	15.92
7	4.04	47.46	4.07	15.85
11	4.10	47.25	4.62	16. 13
17	4.10	47.64	4.63	16.13
22	4.09	47.79	4.53	16.00
31	4.10	47.34	4.68	15.93

从表2可以看出:随着停放时间的延长,胶料的 F_L 先逐渐增大,停放11 d后, F_L 趋于平稳; F_{max} 变化不大; t_{10} 呈延长趋势; t_{90} 变化不大。

2.3 停放时间对垫胶门尼粘度和门尼焦烧时间 的影响

停放时间对垫胶门尼粘度和门尼焦烧时间的 影响如表3所示。

表3 停放时间对垫胶门尼粘度和门尼焦烧时间的影响

11 MAINT 1771 ± 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
停放时间/	d 门尼粘度 [ML(1+4)100 ℃]	门尼焦烧时间 t ₃ (125 ℃)/min			
1	38	23.5			
3	39	26.3			
5	39	27.0			
7	39	26.1			
11	40	26.3			
17	41	25.7			
22	41	26.4			
31	40	24.6			

从表3可以看出,随着停放时间的延长,胶料的门尼粘度呈增大趋势,门尼焦烧时间先延长后缩短,当停放时间为5 d时,门尼焦烧时间最长,停放时间为31 d时,门尼焦烧时间略有缩短。

2.4 停放时间对垫胶硫化特性的影响

停放时间对垫胶硫化特性的影响如表4 所示。

从表4可以看出,随着停放时间的延长,胶料

表4 停放时间对垫胶硫化特性(146℃)的影响

停放时间/d	$F_{\rm L}/$ (dN • m)	$F_{\text{max}}/$ (dN • m)	t_{10}/\min	<i>t</i> ₉₀ /min
1	2.00	22.99	6.38	11.60
3	2.05	23.04	6.50	11.50
5	2.03	23.16	6.55	11.58
7	2.07	23.24	6.53	11.98
11	2.07	23.18	6.57	11.62
17	2.02	23.22	6.55	12.00
22	2.06	23.26	6.40	11.52
31	2.02	23.05	6.38	11.35

的 F_{max} 总体增大, F_{L} , t_{10} 和 t_{90} 变化不大。

2.5 停放时间对帘布胶半成品门尼粘度和门尼 焦烧时间的影响

停放时间对帘布胶半成品门尼粘度和门尼焦 烧时间的影响如表5所示。

表5 停放时间对帘布胶半成品门尼粘度和 门尼焦烧时间的影响

停放时间/d	门尼粘度 [ML(1+4)100 ℃]	门尼焦烧时间 t ₃ (125 ℃)/min	
0	76	16.0	
2	79	13.8	
4	78	15.1	
6	79	16.3	
11	80	16.5	
19	80	17.2	

从表5可以看出,随着停放时间的延长,帘布 胶半成品的门尼粘度总体增大,门尼焦烧时间先 缩短后延长。与帘布胶终炼胶相比,帘布胶半成 品的门尼焦烧时间变化略有减小。

2.6 停放时间对帘布胶半成品硫化特性的影响

停放时间对帘布胶半成品硫化特性的影响如 表6所示。

表6 停放时间对帘布胶半成品硫化特性(146℃)的影响

停放时间/d	$F_{\rm L}/$ (dN • m)	$F_{\text{max}}/$ (dN • m)	t_{10}/\min	<i>t</i> ₉₀ /min
0	4.80	45.18	4.98	16.82
2	4.95	45.01	4.93	16.82
4	4.96	45.05	5.03	16.93
6	5.01	45.48	4.97	16.65
11	4.92	45.31	5.05	16.83
19	5.04	44. 79	5.17	17.00

从表6可以看出:随着停放时间的延长,帘布胶半成品的 F_L 在停放2 d时略有增大,之后趋于平稳; t_{10} 呈延长趋势, t_{90} 变化不大。

3 结论

停放时间对胶料的门尼粘度和门尼焦烧时间 影响较大,对胶料的硫化速度也有一定影响。随 着停放时间的延长,帘布胶和垫胶的门尼粘度呈 增大趋势,门尼焦烧时间先延长后缩短,其中帘布 胶对停放时间更加敏感。胶料经过加工后,停放 时间对半成品门尼粘度和门尼焦烧时间的影响程 度减小。

通过以上分析, 帘布胶合理的停放时间在4 d 以内, 夏季在保证下片温度的情况下, 适当延长停 放时间有利于保证挤出加工的安全性;冬季适当缩短停放时间,有利于保证轮胎气泡点时间的稳定性。帘布胶半成品应尽量缩短停放时间,以保证胶料性能稳定。

参考文献:

- [1] 苏巨桥,赵中国,廖霞,等. 白炭黑填充丁苯橡胶复合体系的粘弹和加工性能研究[J]. 橡胶工业,2018,65(2):132-136.
- [2] 李再琴,刘强,焦清伟.全钢载重子午线轮胎胎面混炼胶停放时间 对挤出效果的影响[J].轮胎工业,2019,39(2):111-113.

收稿日期:2019-09-09

普利司通展示免充气轮胎和主动式 智能轮胎技术

美国《现代轮胎经销商》(www.moderntiredealer.com) 2019年12月18日报道如下。

普利司通公司在2020年1月7—10日于拉斯维加斯会议中心举行的消费电子展(CES)上展示免充气概念轮胎(见图1)和其他移动解决方案。

图1 免充气概念轮胎

"在CES现场,普利司通将展示其先进的免充气轮胎组合,包括个人移动和商业车队应用的概念,"普利司通官员说。目的是演示普利司通的免充气轮胎是如何"将轮胎的胎面和车轮结合成一个耐用、高强度的结构"。"这种设计免除了轮胎充气和维护的需要,基本上消除了与爆胎相关的危险和停机时间。普利司通还将展示一种免充气、弹性轮胎和车轮的月球车解决方案,目前正在为国际空间探索任务而开发。"

活动期间,普利司通还将展示其主动式智能 (Proactive Smart) 轮胎技术。

如今的移动技术并不知道轮胎和路面上发生了什么,这是实现完全自主驾驶的障碍。普利司

通利用其专有知识、轮胎传感器和强大的模拟能力,通过构建下一代轮胎数字适配系统来满足这一需求。

普利司通还将展示其数字适配轮胎技术如何 进行具体、可操作的预测,从而提高车辆安全系统 的精度。

此外,这家总部位于日本东京的轮胎制造商 将重点介绍其Webfleet解决方案平台,该平台利用 数据和分析尽可能高效地移动数百万辆汽车。

CES与会者能够观看该平台的模拟,以了解远程信息处理如何为连接的车辆生态系统提供动力,通过提高安全性和成本效益,改变全球业务方式。

(吴秀兰摘译 赵 敏校)

一种夜光轮胎及其加工工艺

由河北万达轮胎有限公司申请的专利(公开号 CN 110483854A,公开日期 2019-11-22)"一种夜光轮胎及其加工工艺",原料配方为:异戊二烯橡胶 25~35,天然橡胶 20~40,顺丁橡胶 15~25,三元乙丙橡胶 15~25,白炭黑 30~50,白炭黑活性剂PEG 1~3,氧化锌2~6,硬脂酸 1~5,操作油 8~14,防护蜡0.8~3.2,防老剂 0.5~1.5,荧光粉 55~75,硫黄 1.4~2.2,促进剂 1.8~5。加工工艺包括混炼、挤出、压延、胎圈成型、帘布裁断、贴三角胶条、带束层成型、轮胎成型、硫化、形成成品轮胎。采用该配方和加工工艺生产的轮胎不仅能够在夜间发光,还能使轮胎保持良好的耐磨性能。

(本刊编辑部 储 民)