3×0.24+9×0.225CCST钢丝帘线在全钢载重 子午线轮胎胎体中的应用

杨俊坤,曾清,杨利伟,黄晓丽,熊永翠(四川凯力威科技股份有限公司,四川简阳 641400)

摘要:对比研究3×0.24+9×0.225CCST和3+9+15×0.175+0.15钢丝帘线在全钢载重子午线轮胎胎体中的应用。结果表明,3×0.24+9×0.225CCST钢丝帘线的直径较小,破断力较高,其代替3+9+15×0.175+0.15钢丝帘线应用于全钢载重子午线轮胎胎体中,可提高轮胎的强度性能和耐久性能,同时减小轮胎质量和降低生产成本。

关键词:全钢载重子午线轮胎;钢丝帘线;胎体

中图分类号: U463.341⁺.3/.6; TO330.38⁺9 文献标志码: A 文章编号: 1006-8171(2018)04-0239-03

随着我国汽车工业和高速公路的发展,轮胎的使用要求越来越高。子午线轮胎由于具有滚动阻力低、节油以及安全等特点,需求量越来越大。近年来,我国全钢载重子午线轮胎竞争日益激烈,轮胎用钢丝帘线价格居高不下,在这种情况下,运用新材料、新工艺才能有效地降低轮胎成本。

全钢载重子午线轮胎由于只有1层胎体帘布, 在胎体钢丝帘线的选择上首先考虑钢丝强度,其 次考虑胎侧承受反复屈挠变形,因此胎体钢丝帘 线必须具有较高的破断力和较好的耐疲劳性能。 我公司生产的12R22.5全钢载重子午线轮胎胎体 采用3+9+15×0.175+0.15钢丝帘线,生产成本 较高,而新型3×0.24+9×0.225CCST钢丝帘线 强度较高,直径小,可提高压延密度,既能保证轮胎 的安全性,又能有效减小轮胎质量和降低成本。

本工作研究压延密度为65根 • dm^{-1} 的3× 0.24+9×0.225CCST钢丝帘线在12R22.5 18PR 全钢载重子午线轮胎的胎体中的应用,并与3+9+ 15×0.175+0.15钢丝帘线进行对比。

1 实验

1.1 主要原材料

3×0.24+9×0.225CCST钢丝帘线和3+9+15×0.175+0.15钢丝帘线,鞍钢贝卡尔特轮胎帘

作者简介:杨俊坤(1986—),男,四川眉山人,四川凯力威科技股份有限公司工程师,学士,主要从事轮胎结构设计工作。

线(重庆)有限公司产品。

1.2 主要设备

CG4/500×1300S型钢丝帘布压延生产线,意 大利Comerio Ercole公司产品;90°钢丝帘布裁断 机,天津赛象科技股份有限公司产品;全钢载重三 鼓一次法成型机,青岛软控股份有限公司产品;轮 胎室内四工位耐久性试验机,青岛测控技术有限 公司产品。

1.3 性能测试

轮胎各项性能均按相应国家标准和企业标准 进行测试。

2 结果与讨论

2.1 钢丝帘线性能对比

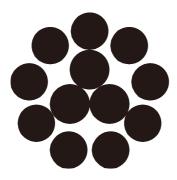

两种钢丝帘线性能指标如表1所示,性能检测结果如表2所示,断面如图1所示。

表1 两种钢丝帘线性能指标

项 目	3×0.24+9× 0.225CCST	3+9+15× 0.175+0.15
单丝直径/mm	0.24/0.225	0.175
帘线直径/mm	0.94 ± 0.050	1.340 ± 0.070
捻向	S/S	S/S/Z/S
线密度/(g • m ⁻¹)	3.940 ± 0.200	5.390 ± 0.200
破断力/N	≥1 700 ≥1 670	
破断力/帘线直径/		
$(N \cdot mm^{-1})$	≥1 808	≥1 246
破断力(N)/线密度/		
$[N \cdot (g \cdot m^{-1})^{-1}]$	≥431	≥310

表2	两种钢丝帘线性能检测结果
10.4	171 17 网 三 中 线 压 配 运 伪 和 不

项 目	3×0.24+9× 0.225CCST	$3+9+15 \times 0.175+0.15$	
帘线直径/mm	0.94	1.34	
附胶率/%	100	100	
破断力/N	1 820	1 780	
抽出力/N	746	764	
破断力/帘线直径/			
$(N \cdot mm^{-1})$	1 936	1 328	
破断力(N)/线密度/			
$[N \cdot (g \cdot m^{-1})^{-1}]$	462	330	

(a) $3 \times 0.24 + 9 \times 0.225 CCST$

(b) $3+9+15\times0.175+0.15$

图1 钢丝帘线断面

从表1和2及图1可以看出,与3+9+15×0.175+0.15钢丝帘线相比,3×0.24+9×0.225CCST钢丝帘线具有以下特点。

- (1) 无外缠丝,单丝之间为线接触,减少了单丝之间的磨损,提高了钢丝帘线的耐疲劳性能。
- (2)单丝间为同向捻制,可避免使用过程中帘线之间发生切割。
 - (3)强度较大,提高了轮胎的安全性能。
- (4)直径更小,作为无内胎的胎体帘线,具有 更优异的耐疲劳性能;可减小压延帘布厚度,单根 钢丝的胶料包覆厚度更大,不仅减小轮胎质量,同 时降低轮胎原材料成本。

2.2 钢丝帘布工艺性能

两种钢丝帘线压延工艺参数如表3所示。

表3 两种钢丝帘布压延工艺参数

项目	3×0.24+9× 0.225CCST	$3+9+15 \times 0.175+0.15$
帘线直径/mm	0.94	1.34
压延密度/(根 • dm ⁻¹)	65	60
压延厚度/mm	2.3	2.5
附胶厚度/mm	0.68	0.58

从表3可以看出,与3+9+15×0.175+0.15 钢丝帘线相比,3×0.24+9×0.225CCST钢丝帘 线直径更小,压延密度和附胶厚度适当增大,能有 效提高轮胎的安全性能。

3×0.24+9×0.225CCST钢丝帘布压延时, 压延工艺良好,钢丝帘线排列均匀,帘布表面光滑 平整,附胶均匀,帘布厚度达标;90°裁断和接头过 程中帘布无翘头、接头开裂、发散等异常现象,接 头质量符合工艺要求;成型过程中钢丝帘布无拉 伸,排列均匀,成型接头、反包无异常;硫化过程正 常,满足工艺要求,硫化后成品轮胎外观质量及X 光检查合格。

2.3 成品性能

两种钢丝帘线成品轮胎耐久性能试验条件如 表4所示,强度性能试验结果如表5所示,室内检测 性能对比如表6所示。

从表5和6可以看出,与采用3+9+15×0.175+0.15钢丝帘线全钢子午线轮胎相比,采用3×0.24+9×0.225CCST钢丝帘线全钢子午线轮胎的外缘尺寸基本保持一致,强度性能有较大提高,耐久性

表4 两种钢丝帘线成品轮胎耐久性能试验条件

试验阶段	负荷率/%	时间/h
1	65	7
2	85	16
3	100	24
4	110	10
5	120	10
6	130	10
7	140	10
8	150	10
9	160	跑坏为止

注:环境温度为(38±3) ℃;轮胎在充气压力为930 kPa的条件下停放24 h,并在装机前将充气压力调至930 kPa;试验速度为70 km \cdot h $^{-1}$ 。

表5	两种钢丝帘线成品轮胎压穿强度性能	

试验点	3×0.24+9× 0.225CCST	3+9+15× 0.175+0.15
第1点	2 208.5	2 207.3
第2点	2 209.3	2 206. 5
第3点	2 207.6	2 208.4
第4点	2 207.9	2 206. 9
第5点	4 407.8	4 158.8
	(未刺穿)	(刺穿)

注:环境温度为(38±3) ℃;轮胎在充气压力为930 kPa的条件下停放24 h,并在装机前将充气压力调至930 kPa。

表6 两种钢丝帘线成品轮胎室内检测性能对比

项	I	3×0.24+9× 0.225CCST	$3+9+15 \times 0.175+0.15$	国家标准
充气外直	径/mm	1 079	1 078	1.085 ± 10.85
充气断面	宽/mm	305	306	300 ± 10.5
压穿强度	/J	4 407.8	4 158.8	≥2 090
耐久性能	/h	122	119	≥47

能有一定改善。

2.4 成本分析

两种钢丝帘线胎体成本对比如表7所示。

表7 两种钢丝帘线胎体成本对比

项目	3×0.24+9× 0.225CCST	$3+9+15 \times 0.175+0.15$
压延厚度指数	92	100
附胶厚度/mm	0.68	0.58
单位面积帘线用量指数	79	100
单位面积胶料用量指数	104	100
单位面积帘布质量指数	89	100

从表7可以看出, $3\times0.24+9\times0.225$ CCST钢 丝帘线的质量比 $3+9+15\times0.175+0.15$ 钢丝帘线大11%,采用 $3\times0.24+9\times0.225$ CCST钢丝帘线可减小成品轮胎的质量。

3 结语

3×0.24+9×0.225CCST钢丝帘线替代3+9+15×0.175+0.15钢丝帘线应用于12R22.5 18PR全钢载重子午线轮胎胎体中,成品轮胎的外缘尺寸基本相同,胎体强度有较大提高,耐久性能有所改善,成品轮胎质量减小,生产成本降低。

收稿日期:2017-10-28

Application of $3 \times 0.24 + 9 \times 0.225$ CCST Steel Cord in Carcass of Truck and Bus Radial Tire

YANG Junkun, ZENG Qing, YANG Liwei, HUANG Xiaoli, XIONG Yongcui (Sichuan Kalevei Technology Co., Ltd., Jianyang 641400, China)

Abstract: The application of 3×0 . $24+9\times 0$. 225CCST steel cord in the carcass of truck and bus radial tire was investigated, and compared with $3+9+15\times 0$. 175+0. 15 steel cord. The results showed that, the diameter of 3×0 . $24+9\times 0$. 225CCST steel cord was smaller than that of $3+9+15\times 0$. 175+0. 15 steel cord and the breaking force was higher. By using 3×0 . $24+9\times 0$. 225CCST steel cord to replace $3+9+15\times 0$. 175+0. 15 steel cord in the carcass, the strength and durability of the tire were improved, and the tire weight and production cost were reduced.

Key words: truck and bus radial tire; steel cord; carcass

一种轮胎活络模具花纹块通用组装装置

中图分类号:TQ330.4⁺1 文献标志码:D

由山东豪迈机械科技股份有限公司申请的专利(公开号 CN 105171986B,公开日期 2018-01-09)"一种轮胎活络模具花纹块通用组装装置",涉及的轮胎活络模具花纹块通用组装装置,属于模具技术领域。该装置包括用于固定花纹块

的模壳,模壳与花纹块之间设有若干块衬板,衬板可拆卸安装于模壳的内表面,衬板的内表面与花纹块的外表面相适配。本发明通用性强,能够满足多种规格结构花纹块的连接、紧固、定位及多种项目检测等功能,节省了投入成本,广泛应用于轮胎活络模具花纹块检测中。

(本刊编辑部 马 晓)