国产 IIR 在内胎中的应用

赵丽莲,高 云 (桂林轮胎厂,广西 桂林 541004)

摘要:进行了国产 IIR 与俄罗斯和加拿大同类产品的理化性能、小配合及大配合对比试验。试验结果表明,国产 IIR 基本达到国外同类产品水平,且国产 IIR 的 300 %定伸应力较大,扯断永久变形小,可直接替代进口 IIR 用于生产 IIR 内胎。

关键词:IIR;内胎;接头强度

中文分类号: TQ333.6; TQ336.1⁺2 文献标识码:B 文章编号:1006-8171(2002)09-0543-03

IIR 具有气密性好、耐热老化等优点,特别适合制造轮胎内胎。但是,我国 IIR 一度全部依靠进口,给 IIR 内胎的生产带来了很大困难。由于进口 IIR 价格昂贵,不仅使那些使用 NR 生产内胎的厂家望而止步,还使不少生产 IIR 内胎的厂家转产 NR 内胎。2000 年,北京燕山石油化工有限公司(以下简称燕化)在国内实现了 IIR 的工业化生产,打破了我国 IIR 长期依赖进口的被动局面,为国内 IIR 内胎生产创造了良好的条件。

2000 年 2 月,我厂将燕化、俄罗斯及加拿大产的 IIR 进行了理化性能、小配合、大配合对比试验,取得了较好的效果。现将试验的有关情况介绍如下。

1 实验

1.1 原材料

IIR: 牌号 IIR-1751, 燕化产品; 牌号 - 1675,俄罗斯产品;牌号 PB-301,加拿大产品。其它均为橡胶工业常用原材料。

1.2 基本配方

IIR 85; EPDM 15; IIR 再生胶 20; 硫化剂 1.5; 促进剂 8; 炭黑 70; 软化剂 24; 其它 3, 合计 226.5, 含胶率 44.15%。

1.3 试验设备及仪器

160 mm ×320 mm开炼机; XM-140/20密 炼机;40 t平板硫化机; R-100S硫化仪,美国孟山

作者简介:赵丽莲(1954-),女,湖南邵东人,桂林轮胎厂高级 工程师,主要从事轮胎配方设计及工艺管理工作。 都公司产品;MV2000 门尼粘度仪,美国阿尔法公司产品;XLL-250 型拉力机,上海化工机械厂产品;401A 型热老化箱,上海实验仪器总厂产品;XS-B 显微镜,南京江南仪器厂产品。

1.4 试样制备

理化性能试验胶料和小配合试验胶料在开炼机上加工,大配合试验胶料在密炼机上加工,最后在平板硫化机上硫化。

1.5 性能测定

胶料性能测定按相应的企业标准或国家标准 进行。

2 结果与讨论

2.1 理化性能试验

试验参照现行常规检验方法进行,结果见表 1。从表 1 可以看出,国产 IIR-1751 理化性能与进口产品 -1675 和 PB-301 接近。

2.2 小配合试验

采用基本配方,在实验室进行 IIR-1751 与-1675 和 PB-301 的小配合性能对比试验,结果见表 2。从表 2 可以看出,IIR-1751 的 300 %定伸应力较高、扯断永久变形较小,其它性能与-1675 和 PB-301 接近。

2.3 车间大配合试验

在小配合试验的基础上进行了大配合试验, 因当时 PB-301 缺料,只做了 IIR-1751 与 -1675 的对比试验,结果见表 3。从表 3 可以看出, 试验具有很好的重现性,也就是说,不论是小配合 还是大配合试验,结果都反映出 IIR-1751 的 300 %定伸应力较高、扯断永久变形较小,其它性能与进口 IIR 接近之特点。

表 1 理化性能分析结果

项 目	IIR-	-	PB-	企业
	1751	1675	301	指标
加热减量(105)/ %	0.34	0.12	0.14	0.5
灼烧减量(850)/%	0.29	0.23	0.12	0.5
门尼粘度[ML(1+4)100]	73.2	76.7	77.2	75 ±10
硫化仪数据(165)				
$M_{\rm L}/~({ m N}~{ m \cdot m})$	17.5	18.1	18.5	_
$M_{\text{H}}/\text{ (N }\cdot\text{m)}$	62.8	63.5	64.2	_
<i>t</i> ≤2/ min	2.1	2.4	2.2	_
t ₉₀ / min	16.6	17.2	16.3	_
硫化胶性能(150 ×40 min)				
邵尔 A 型硬度/度	57	60	63	_
300 %定伸应力/ MPa	6.4	6.2	6.6	_
拉伸强度/ MPa	19.8	17.2	16.6	15.2
扯断伸长率/%	670	650	600	450

注:检验配方:IIR 100;炭黑 N330 50;氧化锌 3;硬脂酸1;硫黄 1.75;促进剂 TMTD 1。

表 2 小配合试验结果

项 目	IIR-1751	-1675	PB-301
硫化仪数据(176.7)			
$M_{\rm L}/$ (N ·m)	9.0	8.1	8.0
$M_{\rm H}/({\rm N}\cdot{\rm m})$	44.8	42.1	41.7
t_{s2}/\min	1.5	1.6	1.6
t90/ min	6.2	5.7	6.0
硫化胶性能(142 ×30 min)			
邵尔 A 型硬度/度	54	60	58
300 %定伸应力/ MPa	4.7	4.0	3.7
拉伸强度/ MPa	10.6	11.2	11.0
扯断伸长率/%	680	680	680
扯断永久变形/%	26.0	27.6	27.6
撕裂强度/ (kN·m ⁻¹)	33.3	31.5	30.5
接头强度 ¹⁾ / MPa	10.6	10.9	10.8
分散度 ²⁾ / 度	5.2	5.0	5.0
100 ×48 h 老化后			
邵尔 A 型硬度/度	61	61	60
拉伸强度/ MPa	9.5	9.4	8.6
扯断伸长率/%	520	530	506
撕裂强度/ (kN·m·1)	24.9	25.6	24.7

注:1) 接头强度是用两块材料相同的未硫化胶,在 IIR 内胎接头机上对接,在平板硫化机上硫化,试样用拉力机测试;2)显微镜观察判级。

表 3 大配合试验结果

项 目	IIR-1751	-1675
车间胶料快检性能		
威氏塑性值	0.48	0.45
相对密度	1.11	1.11
硫化仪数据(185)		
$M_{\rm L}/$ (N ·m)	12.89	13.29
$M_{\rm H}/~({ m N}~{ m \cdot m})$	43.11	42.06
t ₁₀ / min	1.23	1.15
t ₈₀ / min	2.90	2.65
硫化仪数据(176.7)		
$M_{\rm L}/$ (N ·m)	8.1	9.0
$M_{\rm H}/({\rm N}\cdot{\rm m})$	40.5	41
t _{s2} / min	1.6	1.4
t ₉₀ / min	5.7	5.4
硫化胶性能(142 x 30 min)		
邵尔 A 型硬度/度	58	56
300 %定伸应力/ MPa	4.6	2.6
拉伸强度/ MPa	9.2	8.0
扯断伸长率/%	700	700
扯断永久变形/%	24.8	33.2
撕裂强度/ (kN ·m · ¹)	26.7	29.3
接头强度 ¹⁾ / MPa	9.0	7.8
分散度 ²⁾ / 度	4.1	4.0
100 ×48 h 老化后		
邵尔 A 型硬度/度	60	64
拉伸强度/ MPa	7.9	7.9
扯断伸长率/%	500	510
撕裂强度/ (kN·m ⁻¹)	27.9	24.9

注:同表2。

2.4 工艺性能

2.4.1 炼胶

IIR-1751 与 -1675 和 PB-301 在相同工艺 条件下炼胶,IIR-1751 混炼效果较好。表 2 和 3 中的分散度和塑性值结果可以证明这一点。

2.4.2 滤胶

IIR-1751 塑性值较大,滤胶性能较好。据我厂使用经验,PB-301 最难滤胶, -1675 次之。-1675 常常 40 min 就需换一次滤网,而 IIR-1751 可以在 40 min 以上换一次滤网。

2.4.3 挤出

IIR-1751 流动性较好,挤出收缩率较小,挤出尺寸容易掌握,厚薄不均现象较少,胎筒合格率较高。

2.4.4 接头

IIR内胎接头工艺很重要。因为IIR自粘性

与 NR 相差甚远,所以 IIR 内胎生产厂家总要采取许多措施来解决 IIR 内胎接头问题,也特别关注 IIR 的自粘性问题。从表 2 和 3 中的接头强度可以看出,IIR-1751 自粘性比较好。

2.4.5 硫化

硫化按正常硫化条件进行,产品无异常。

2.5 成品性能

2.5.1 成品解剖性能

对用大配合加工的 IIR-1751 混炼胶,经正常滤胶、挤出、接头、硫化所得内胎成品进行解剖,结果见表4。从表4可以看出,成品解剖性能满足国标要求。

表 4 9.00 - 20 IIR内胎成品解剖性能

项 目	IIR-1751	GB 7036.1 —1997
邵尔 A 型硬度/ 度	54	_
300 %定伸应力/ MPa	4.0	_
拉伸强度/ MPa	10.8	8.4
扯断伸长率/%	640	450
热拉伸变形 %	18	35
粘合强度/(kN·m ⁻¹)		
胶垫与胎身	5.0	3.5
胶垫与气门嘴	12.1	3.5
接头强度/ MPa	8.3	3.4

2.5.2 成品抽查物性统计

分别统计了 1998 年 5 月使用 PB-301,1999 年 6 月使用 -1675,2000 年 6 月使用 IIR-1751 时的 IIR 内胎成品抽查物理性能及外观合格率,结果见表 5。从表 5 可以看出,3 种 IIR 内胎各项性能均满足国标要求,且 IIR-1751 的 300 %定伸应力较高,内胎成品外观合格率较高。

2.6 经济效益

2001 年市场价:国产 IIR 16 500 元 t⁻¹,俄 罗斯 IIR 17 500元 t⁻¹,加拿大 IIR 23 500 元 t⁻¹。按年产 IIR 内胎 80 万条计,约用 IIR 1 200 t,可节约人民币 120 万元或 840 万元,折合 15 万美元或 100 万美元。另外,1 200 t IIR 国产化,可节省外汇支出 238 万美元。

3 结论

经过理化性能、小配合、大配合试验证明, IIR-1751 与 -1675 和 PB-301 性能接近。相对而言,国产 IIR 的 300 %定伸应力较大,扯断永久变形较小。

- (1)国产 IIR 工艺性能良好。混炼质量较好, 易滤胶,挤出尺寸比较容易掌握,接头质量较好, 外观质量问题较少,内胎成品合格率较高。
- (2) 国产 IIR 可替代进口产品投入 IIR 内胎的正常生产。
- (3)国产 IIR 市场价较低,应用国产 IIR 可大大降低 IIR 内胎生产成本,节省外汇,经济效益十分可观。
 - (4) 国产 IIR 质量不够稳定,希望改进。

表 5 内胎成品(9.00-20)性能统计

项 目	A	В	С	D
邵尔 A 型硬度/ 度	50	49	53	_
300 %定伸应力/ MPa	3.7	3.2	3.1	_
拉伸强度/MPa	10.5	10.6	9.2	8.4
扯断伸长率/%	670	700	705	450
热拉伸变形 %	17	18	17	35
粘合强度/ (kN·m⁻¹)				
胶垫与胎身	7.4	5.8	7.0	3.5
胶垫与气门嘴	7.3	9.6	8.7	3.5
平均接头强度/ MPa	7.6	7.3	8.0	3.4
外观合格率/%	99.59	99.43	98.90	

注:A —IR-1751,B — -1675,C —PB-301,D —GB 7036.1 — 1997。

致谢:本文得到吴苡仁高级工程师的帮助指导,特表谢意。

第十二届全国轮胎技术研讨会论文

西藏七大公路项目开工

中图分类号:U412.36⁺4 文献标识码:D

自国家再次加大对西藏基础设施建设的投资力度以来,西藏的公路建设出现前所未有的局面。仅今年上半年,全区就有七大公路项目全面开工,线路全长1319.61 km.总投资29.41亿元。

这7个公路建设项目是:青藏公路整治改造

工程、川藏公路八宿西-牛踏沟段整治改建工程、 川藏公路色季拉山段改建工程、邦达机场至邦达 兵站公路、山南地区泽当-错那公路改建工程、山 南泽当至桑日公路改建工程和阿里地区狮泉河-困沙公路改建工程。

(摘自《中国汽车报》,2002-07-29)