IIR 胶囊硫化时间的制定方法

俞 毅.郭人和

[上海轮胎橡胶(集团)股份有限公司 载重轮胎厂,上海 200245]

摘要:通过对 IIR 混炼胶 t_{90} 和理论硫化时间以及成品物理性能进行测定,并经实际使用情况统计和验证,得到了胶囊扩义因数,提出了制定 IIR 胶囊硫化时间的准确、快捷方法:硫化时间=混炼胶的 t_{90} ×扩义因数 K,其中 K在一定温度范围内随胶囊厚度的增大而增大。

关键词:IIR;胶囊;硫化时间;扩义因数

中图分类号: TQ336.1 *5 文献标识码:B 文章编号:1006-8171(2000)12-0751-02

胶囊是应用定型硫化机硫化外胎的工具,它起着定型和传热的作用。实践表明,胶囊质量的好坏对双模定型硫化机的生产效率、轮胎的质量起着重要的作用。胶囊是在苛刻条件下使用的橡胶制品,对各方面的技术要求较严。而影响胶囊质量的因素又很多,主要有胶料配方、混炼工艺、成型工艺、硫化条件和使用条件等。鉴于目前条件对胶囊进行硫化测温难以实施,无法确定一个比较准确的硫化时间,往往是"宁长勿短",既浪费了时间,又影响了质量,因此,通过对胶囊硫化时间、成品物理性能和实际使用情况进行分析研究,提出了制定 IIR 胶囊硫化时间的准确、快捷方法,现简要介绍如下。

1 实验

1.1 IIR混炼胶 ton的测定

用孟山都硫化仪测定 IIR 混炼胶在 190 和 200 时的 t_{90} 。

1.2 成品物理性能测试

胶囊规格为 10.00R20,硫化温度均为 200 ,硫化时间分别为 120,100,50 和 40 min。物 理性能按相应国家标准测试。

1.3 胶囊气孔性试验

胶囊气孔性试验是测定胶囊的理论硫化时

作者简介: 俞毅(1972-),女,浙江宁波人,上海轮胎橡胶(集团)股份有限公司载重轮胎厂助理工程师,从事轮胎硫化工艺方面的研究工作。

间,即每次硫化减少10%的硫化时间,直至胶囊囊口产生气孔。将胶囊产生气孔的硫化时间再增加30%即为胶囊的理论硫化时间。

1.4 胶囊厚度的测定

用游标卡尺测量胶囊壁的最大厚度。

2 结果与讨论

2.1 胶囊成品物理性能与实用情况

不同硫化时间下胶囊成品的物理性能比较 见表 1。

从表 1 可以看出,随着硫化时间的缩短,定伸应力和邵尔 A 型硬度的变化趋势是逐渐降低,而扯断伸长率(特别是老化后的扯断伸长率)却显著增大。邵尔A型硬度的降低虽不利

表 1 不同硫化时间下胶囊成品物理性能比较

	硫化时间/ min					
项 目 	120	100	50	40	50	
存放时间/ d	3	3	3	3	100	
300 %定伸应力/ MPa	5.1	5.3	4.9	3.6	4.8	
500 %定伸应力/ MPa	10.2	10.8	9.9	7.6	10.1	
拉伸强度/ MPa	12.1	12.4	12.8	12.2	12.5	
扯断伸长率/%	568	598	624	700	654	
撕裂强度/ (kN ·m · ¹)	70.7	65.0	60.8	70.3	62.1	
邵尔 A 型硬度/ 度	56	57	55	51	60	
扯断永久变形/%	24	22	20	20	19	
100 ×48 h 老化后						
拉伸强度/ MPa	11.7	12.3	13.1	12.3	12.7	
扯断伸长率/%	608	600	640	660	668	
撕裂强度/						
(kN •m ^{- 1})	67.1	68.3	64.6	65.2	63.8	

于胶囊的使用,但经过存放后胶囊的硬度明显增大,这些都有利于胶囊的使用。实际使用情况也是如此,见表 2。

表 2 的数据表明,10.00R20 胶囊硫化 50 min 的实际使用情况好于硫化 100 min 的实际使用情况。

表 2 10.00 R20 胶囊硫化 50 和 100 min 的实际使用情况比较

项 目	排气线裂	正常使用次数	内表面氧化	机械损坏(人为)	缺胶	总计	去除机械损坏
硫化 50 min							
调换数量/ 只	13	20	5	3	4	50	47
平均使用次数	206	292	78	126	134	196	201
所占比例/%	26	40	10	6	8	_	_
硫化 100 min							
调换数量/ 只	17	15	6	2	5	50	48
平均使用次数	182	280	72	156	127	173	174
所占比例 / %	34	30	12	4	10		

注:硫化温度为 200 。

2.2 硫化时间的确定

不同胶囊厚度与硫化时间的对应关系见表 3。

表 3 不同胶囊厚度与硫化时间的对应关系

规格	厚度/ mm	理论硫化 时间/ min	硫化时间/ min
10. 00R20	12.0	48	50
11R22.5	10.5	46	50
12.00R20	13.9	60	65
225/75R16	8.4	42	45

从表 3 可以看出,我们实际采用的硫化时间与理论硫化时间很接近。但是采用气孔性试验得到的硫化时间花费较大,且周期较长。为了快速而正确地制定硫化时间,可以通过扩义因数 *K* 确定:

硫化时间 = K ×混炼胶的 t_{90}

硫化时间与胶囊厚度有关,因此 K 与胶囊厚度的关系如下:

胶囊厚度/mm	K
7.8 ~ 10.0	3.2
10.0 ~ 12.0	3.6
12.0 ~ 14.5	4.6

由于在实际生产中胶囊的硫化温度时有波动,因此要符合上述要求,特作如下规定:

胶囊硫化温度在 $195 \sim 205$ 之间,取 200 时的 t_{90} ;

胶囊硫化温度在 185~195 之间,取 190

时的 t_{90} 。

当温度低于 185 时,上述扩义因数与胶囊厚度的关系不适用。事实上,胶囊的硫化温度低于 185 ,严格说不具备 IIR 胶囊的生产条件。也就是说,当温度低于 185 时延长硫化时间,无法得到应有的质量水平。

采用孟山都硫化仪测定 IIR 混炼胶在 200 和 190 时 t_{90} 分别为 13.8 和 20.6 min。如果胶囊厚度在 11 mm 左右,当硫化温度为 200 时,硫化时间为 13.8 \times 3.6 = 49.68 (min);

当硫化温度为 190 时,硫化时间为 20.6 × 3.6=74.16 (min)。

有了扩义因数与胶囊厚度的关系之规定,只要测定胶料(各工厂的胶料可能不同)的 t_{90} ,就能很快并且正确推算出硫化时间。当然对推算出来的硫化时间可作小范围变动,以避免盲目地延长时间,这样既避免浪费大量时间,又能提高产品质量。

3 结论

- (1) 采用扩义因数 K 可以正确而快捷地制定 IIR 胶囊的硫化时间,是一种极为有效、经济的方法。
- (2)使用气孔性试验得到胶囊硫化时间也 是可行的,但试验周期较长且不经济。
- (3)扩义因数与胶囊厚度有关,且在一定温度范围内随胶囊厚度的增大而增大。

第 11 届全国轮胎技术研讨会论文