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Defect Detection of Tire by X Ray Image Based on
Convolutional Neural Network

BIAN Guolong, LI Yong, QI Shunqing, WANG Yanju,YU Shenghong,SONG Meiqin
(Qingdao DoubleStar Tire Industry Co. ,Ltd,Qingdao 266400, China)

Abstract: In order to solve the problem that it was difficult to obtain the accurate image features by
using the common X ray image method for tire defect detection, a method of obtaining image features
through convolutional neural network was proposed. In this method,the X ray image of tire was enhanced,
and then the network model was established. The training algorithm was used to obtain the image defect
features,and the trained model was used to identify the defects in the image. First, the neurons corresponding
to the parameters were divided into critical and non—critical parts. Then, the local critical points and dynamic
learning rate were used to achieve quick adjustment of parameters. The experiment results showed that the
designed network model was less susceptible to get over fitted, and it had a faster parameter adjustment, a
shorter time and higher accuracy of defect detection.

Key words: tire; image segmentation;deep learning; convolutional neural network ; defect detection
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