无内胎全钢载重子午线轮胎不同排列钢丝圈 结构的有限元分析

王泽君1,王红彦1,王友善2

(1.中策橡胶集团有限公司,浙江杭州 310018;2哈尔滨工业大学复合材料与结构研究所,黑龙江哈尔滨 150080)

摘要:使用轮胎专用有限元分析软件TYSYS,TYABAS和TYABAS-POST,针对无内胎全钢载重子午线轮胎不同 排列结构的钢丝圈进行有限元分析对比。结果表明,左斜七边形钢丝圈受力性能优于六边形钢丝圈和右斜七边形钢丝 圈。室内试验结果验证了有限元分析结果的正确性。

关键词:无内胎;全钢载重子午线轮胎;钢丝圈结构;有限元分析

中图分类号:TQ336.1⁺1;O241.82 文献标志码:A 文章编号:1006-8171(2018)04-0200-05

全钢载重子午线轮胎的胎圈由多种部件组成,是非常关键的部位。与斜交轮胎的径向扩张型胎圈结构相比,全钢载重子午线轮胎的胎圈结构属于L扭转扩张型胎圈结构,所承受的内压应力及负荷下的附加应力比同等规格的斜交轮胎高30%~50%,需要很高的支撑刚度。全钢载重子午线轮胎的胎圈组成部件比斜交轮胎多,结构设计也复杂得多^[1-2]。

充气轮胎的钢丝圈对胎体帘布起径向约束作 用。轮胎充气后胎体帘线产生与内压作用相平衡 的张力,胎圈部位中此张力的径向分力则由钢丝 圈所产生的径向约束力平衡。而径向约束力的产 生与钢丝圈周向受到一定张力是分不开的^[11]。因 此,钢丝圈是全钢载重子午线轮胎胎圈部位中的 重要部件。

本工作采用有限元分析方法,使用轮胎专用 有限元分析的前处理软件TYSYS,TYABAS和后 处理软件TYABAS-POST,以大型三维非线性有限 元通用软件ABAQUS的隐式求解器STANDARD 作为计算工具,从无内胎全钢载重子午线轮胎的 不同排列钢丝圈结构出发,进行多种排列结构的 钢丝圈受力分析,并利用室内试验验证仿真计算 结果的正确性。

1 方案设计

全钢载重子午线轮胎的钢丝圈既有圆形断 面,也有矩形断面和多边形断面。而制造钢丝圈 的胎圈钢丝本身也是既有圆形断面,也有矩形断 面。本工作仅探讨无内胎全钢载重子午线轮胎的 圆形胎圈钢丝单根缠绕形式的钢丝圈性能的有 限元分析和结构优化。钢丝圈制造采用英国-美 国国家标准公司生产的钢丝圈缠绕机,将1.42, 1.55,1.65和1.83 mm等不同直径的镀青铜高延伸 的单根胎圈钢丝经过挤出机覆胶,通过计算机程 序控制在钢丝圈卷成盘上缠绕成具有特定断面形 状的钢丝圈。

为了研究无内胎全钢载重子午线轮胎不同排 列钢丝圈结构的受力情况,本工作对4种排列方式 进行分析对比,如图1所示。

方案A是引进技术中的一种类似排列方式(右 斜七边形),方案B是现生产的设计方式(规则六边 形),方案C和D为改进设计方案(左斜七边形)。方 案A—D钢丝圈总根数分别为65,65,65和63。

2 有限元模型的建立

2.1 前处理及计算条件

为了便于结果比较,在前处理工作中,无内胎 全钢载重子午线轮胎的二维全断面具有相同的节 点数和单元数,即有2065个节点,1952个单元, 如图2所示。轮胎周向划分为74个断面,如图3所

作者简介:王泽君(1971—),男,黑龙江林口县人,中策橡胶集 团有限公司高级工程师,硕士,主要从事全钢子午线轮胎的技术管 理、结构设计与有限元分析工作。

计算步骤及计算条件如下。

第1步:进行充气状态的二维计算,充气压力 为900 kPa。

第2步:进行静载状态的三维计算,载荷为

3 550 kg,充气压力为900 kPa。

在以下的钢丝圈受力结果中,S11表示X方向 受到的正应力,S22表示Y方向受到的正应力,S33 表示Z方向受到的正应力。

2.2 胎圈部位网格划分及钢丝圈形状

胎圈部位的网格划分及钢丝圈的节点编号和 单元编号分别如图4和5所示。4种方案轮胎右轮 辋钢丝圈形状如图6所示。

3 结果与分析

3.1 二维计算的应力最大值

4种方案轮胎二维计算的胎圈部位应力分布 分别如图7—10所示。

从二维计算的应力最大值可以看出:

(1) 在钢丝圈的钢丝根数相同时(65根), S33 的最大值按照方案A,B,C的顺序降低;

(2)方案D轮胎钢丝圈的钢丝根数比其他3个 方案少2根(63根),其S33的最大值高于方案C,但 仍低于方案A和B;

(a) 左轮辋

图4 胎圈部位网格划分及钢丝圈的节点编号

(a) 左轮辋

图5 胎圈部位的网格划分及钢丝圈的单元编号

(3) S11和S22的最大值没有出现在钢丝圈中, S11的最大值出现在带束层中,且最大值相差不 大,说明钢丝圈排列改变没有影响带束层的受力 情况,这是符合圣维南原理的。

因此,钢丝圈的受力情况仅考虑周向,即Z方向的S33即可,亦即图7—10中靠近胎趾部位的钢 丝圈受力中的红色部分就是应力最大值部位。

3.2 三维计算的钢丝圈应变能

分别比较4种方案轮胎三维计算的钢丝圈应 变能极值及幅值,如表1所示。

从表1可以看出,钢丝圈应变能极值及幅值由 小到大的排列顺序为方案C,D,A,B,按照最小应 变能理论,方案C优于其他方案。

3.3 三维计算的钢丝圈Z向应力

分别比较4种方案轮胎三维计算的钢丝圈Z向应力极值及幅值,如表2所示。

从表2可以看出,在钢丝总根数相等时,钢丝 圈Z向应力最大值由小到大的排列顺序为方案C, A,B。方案D在钢丝总根数少2根的情况下,最大 值略大,但幅值却最小。

(a)方案A

(b)方案B

	表1 4种方案钢丝圈应变能极值及幅值对							
项	目	方案A	方案B	方案C	方案D			
最大值		3.323	3.327	3.229	3.266			
最小值		0.003	0.003	0.004	0.004			
幅值		3.320	3.324	3.225	3.262			

表2 4种方案钢丝圈Z向应力极值及幅值对比 MPa

项	目	方案A	方案B	方案C	方案D
最大值	Ĺ	987.3	996.0	983.8	988.4
最小值	Ĺ	-113.4	-90.02	-120.6	-91.31
幅值		1 100.7	1 086.02	1 104.4	1 079.71

4 成品试验

使用方案C的65根左斜七边形钢丝圈进行无内胎全钢载重子午线轮胎试制。与方案B的65根规则六边形钢丝圈轮胎胎圈耐久性能试验结果(188h,胎圈上端裂)相比,方案C轮胎(264h,未损坏)提高较多。在水压爆破试验中,方案B轮胎的钢丝圈断裂,而方案C的钢丝圈没有断裂。

5 结语

经过有限元分析,并经成品轮胎室内试验验 证,可以得到如下结论。

(1)从钢丝圈受力及应变能结果来看,方案

A,B,C的钢丝圈总根数虽然相同,但由于排列方 式不同,导致方案C的钢丝圈安全倍数最大(应力 极值和应变能最小),这说明对引进技术(方案A) 需要进行批判地吸收,对不合理之处应进行适当 调整。

(2)从方案B和D的钢丝圈受力及应变能结果 来看,在保持钢丝圈安全倍数基本不变的情况下, 可以适当减小钢丝圈总根数,降低设计及生产成 本(至少3%)。

方案C的改进钢丝圈结构在中策橡胶集团有限公司的无内胎全钢载重子午线轮胎中进行了多年的实际使用,2016年达到最高年产量近400万条,尚未反映出由钢丝圈本身引起的不良现象。 新钢丝圈结构已申请并获得了国家发明专利和实用新型专利(专利号分别为CN 102107590A和CN 201922863U)。

参考文献:

- [1] 隆有明. 充气轮胎中钢丝圈的强力利用率[J]. 轮胎工业, 1988, 8 (6):1-11.
- [2] 王泽君,刘锡斌,朱圣雄. 全钢载重子午线轮胎的钢丝圈生产工艺
 [J]. 轮胎工业,2001,21(8):490-493.

收稿日期:2017-10-20

Finite Element Analysis on Different Bead Structure of Tubeless All-steel Truck and Bus Radial Tire

WANG Zejun¹, WANG Hongyan¹, WANG Youshan²

(1. Zhongce Rubber Group Co., Ltd, Hangzhou 310018, China; 2. Harbin Institute of Technology, Harbin 150080, China)

Abstract: By using finite element analysis (FEA) software for tire, TYSYS, TYABAS and TYABAS– POST, the FEA comparison was made on the different bead structures of tubeless all-steel truck and bus radial tire. The results showed that, the mechanical property of left-hand heptagonal bead was better than that of hexagonal bead or right-hand heptagonal bead. The results of FEA were verified by laboratory experiments.

Key words: tubeless; all-steel truck and bus radial tire; bead structure; finite element analysis

欢迎订阅《轮胎工业》《橡胶工业》《橡胶科技》杂志 欢迎刊登广告