硅烷偶联剂 MB-69 的应用研究

官少华 刘儒栋 陈晓玉

(青岛第六橡胶厂 266021)

陈增纯

(青岛第二橡胶厂 266041)

摘要 在含有白炭黑的工程机械轮胎胎面胶中加入适量的硅烷偶联剂 MB-69,进行小配合胶料、车间大料及成品试验。结果表明,轮胎胎面胶的拉伸强度、耐磨性能、抗撕裂性能及 300 %定伸应力均有明显提高,降低了胎面挤出温度,改善了胶料的焦烧性能和挤出工艺性能,从而提高了轮胎的使用性能。 关键词 硅烷偶联剂 白炭黑 工程机械轮胎 胎面胶

工程机械轮胎大部分在矿区或非正式路面上行驶,使用条件苛刻,要求轮胎具有较高的抗刺扎、抗撕裂性能和优良的耐磨性能。要达到这些要求,必须提高其胎面胶的抗撕裂性能、硬度、300%定伸应力和扯断伸长率。根据白炭黑和硅烷偶联剂补强体系可满足以上性能要求的机理,在工程机械轮胎胎面胶中应用白炭黑和硅烷偶联剂 MB-69 进行试验研究,并进行了小配合胶料、车间大料及成品试验。现将试验情况介绍如下。

1 实验

1.1 主要原材料

MB-69,广州有色金属研究院天河科技 开发公司化工厂产品;沉淀法白炭黑,青岛泡 花碱厂产品;其它原材料均为轮胎生产常用 原材料。

MB-69 是由淡黄色液体的硅烷偶联剂 双(3-三乙氧基硅烷丙基) 四硫化物(一种补 强性的抗返原硫化剂) 与炭黑 N330 按 1 1 比例混合而成的颗粒状固体产品,适用于含 有高分散的白炭黑胶料硫化的高效硅烷偶

作者简介 官少华,女,32岁。工程师。1988年毕业于华南工学院(现华南理工大学)高分子系。主要从事轮胎配方工作。

联剂。其质量指标如下:

外观:黑色颗粒状固体

硫质量分数:11%~13%

加热减量(105):<3%

丙酮不溶物:(52.0 ±3.0)%

灰分:11%~12%

1.2 仪器与设备

国产 160 mm ×320 mm 开炼机,600 mm ×600 mm 四层平板硫化机,美国孟山都公司 R-100S 硫化仪,XQ-250 橡胶强力试验机,DSOV-2 屈挠试验机。

1.3 试样制备

混炼胶试样用 160 mm ×320 mm 开炼机混炼,再用600 mm ×600 mm 平板硫化机硫化制得。成品试验试样从17.5-25 工程机械轮胎外胎上按有关国家标准切割、磨片后制得。

1.4 性能测试

胶料的各项物理性能均按相应国家标准 进行测定。

2 结果与讨论

2.1 小配合试验

采用正常生产的工程机械轮胎胎面胶配 方进行 MB-69 变量试验。胎冠胶试验结果 见表 1.胎侧胶试验结果见表 2。

表 1 胎冠胶小配合试验结果

项 目	 配方号			
	1 #	2 #	3 #	4 #
MB-69 用量/ 份	0	1	2	3
硫化仪数据(145)				
$t_{\rm sl}/\min$	8.9	8.2	8.2	8.1
t ₉₀ / min	21.1	24.5	23.7	25.8
硫化胶性能(硫化条件:143	× 40 min)			
邵尔 A 型硬度/ 度	71	70	70	73
扯断伸长率/%	550	550	540	510
拉伸强度/ MPa	24.5	24.7	25.2	26.0
300 %定伸应力/ MPa	12.3	12.3	13.1	14.4
扯断永久变形/%	25	25	23	23
回弹值/%	21.3	23.1	23	23
撕裂强度/ (kN·m ⁻¹)	119	141	143	148
磨耗量 [cm³·				
$(1.61 \text{ km})^{-1}$	0.294	0.238	0.229	0.191
疲劳断裂寿命/ 万次	19.07	29.03	24.65	_

注:基本配方:NR 70;SR 30;炭黑和白炭黑 55; 活性剂 8;防老剂 4;软化剂 7;硫化剂和促进剂 2.5。

表 2 胎侧胶小配合试验结果

	配方号			
项 目	1 #	2 #	3 #	
MB-69 用量/ 份	0	1	1.5	
硫化仪数据(145)				
$t_{\rm sl}/\min$	15.0	11.5	14.0	
t ₉₀ / min	38.5	35.5	40.5	
硫化胶性能(硫化条件:143	x 50 min)			
邵尔 A 型硬度/ 度	65	65	65	
扯断伸长率/%	670	600	600	
拉伸强度/ MPa	18.5	19.5	20.5	
300 %定伸应力/ MPa	7.5	8.2	8.5	
扯断永久变形/%	20	15	18	
回弹值/%	35.7	35.7	36.0	
疲劳寿命/ 万次				
初裂	1.08	1.94	1.94	
断裂	28.33	38.83	39.43	

注:基本配方:NR 40;SR 60;炭黑和白炭黑 58;活性剂 8;粘合剂 2;防老剂 4;软化剂 7;硫化剂和促进剂 2.3。

从表 1 和 2 可以看出,胎冠胶、胎侧胶性能试验结果基本一致:加 MB-69 后胶料的拉伸强度、300 %定伸应力、回弹值、疲劳寿命、撕裂强度及耐磨性能都有明显的提高。300 %定伸应力和弹性提高,动态疲劳性能没有降低,从而减小了轮胎的变形和滞后损失,

降低了生热,提高了轮胎的挺性和使用性能。

偶联剂在橡胶与二氧化硅间起到了架桥的作用,从而改善了白炭黑与橡胶间的界面状况,提高了白炭黑的补强性和胶料的物理性能。

2.2 车间大料试验

车间大料试验采用小配合试验中的胎冠胶 1 # 和 2 # 配方及胎侧胶 1 # 和 3 # 配方,在 F270 密炼机上分二段混炼。第一段混炼时,密炼机转子的转速为 40 r min 1,压砣压力为 0.6 MPa;第二段混炼时,密炼机转子转速为 20 r min 1,压砣压力为 0.3 MPa。MB-69 与硫黄在第二段一起加入。密炼机排料后启动螺杆挤出机和压片机将胶料压成胶片。将胶片送上接取输送带用肥皂液喷淋,然后进冷却架,冷却至胶片温度在 35 以下。混炼胶的试验结果见表 3 和 4。

表 3 在胎冠胶中应用的试验结果

	配7	 配方号		
项 目	1 #	2 #		
硫化仪数据(145)				
$t_{\rm sl}/\min$	10.3	9.3		
t ₉₀ / min	29.2	28.2		
硫化胶性能(硫化条件:143	× 50 min)			
邵尔 A 型硬度/度	65	65		
扯断伸长率/%	560	510		
拉伸强度/ MPa	23.4	25.2		
300 %定伸应力/ MPa	10.5	13.8		
扯断永久变形/%	25	23		
回弹值/%	31	32		
疲劳断裂寿命/ 万次	13.99	23.28		
撕裂强度/(kN·m ⁻¹)	124	130		
磨耗量 [cm³ (1.61 km) -1]	0.372	0.172		

从表 3 和 4 可以看出,加 MB-69 的胎冠胶和胎侧胶的性能优于未加的胶料,其拉伸强度、300 %定伸应力、回弹值、疲劳寿命、撕裂强度、耐老化性能、耐磨性能都明显提高,扯断伸长率、扯断永久变形减小。

2.3 成品性能试验

使用 2 台 200 mm 挤出机挤出复合胎面.其工艺条件见表 5.成品性能试验见表 6。

	配力	配方号		
项 目 	1 #	3 #		
邵尔 A 型硬度/ 度	60	62		
扯断伸长率/%	590	550		
拉伸强度/ MPa	19.5	20.3		
300 %定伸应力/ MPa	7.8	9.8		
扯断永久变形/%	23	18		
回弹值/%	35.6	38.6		
疲劳断裂寿命/ 万次	16.3	30.66		
撕裂强度/ (kN ·m · 1)	97	104		
100 x24 h 老化后				
拉伸强度变化率/%	- 9.2	- 2.5		
扯断伸长率变化率/%	- 25.4	- 21.8		

注·硫化条件·143 **x**50 min.

表 5 胎面挤出工艺条件

	对比胶料		加 MB-69 胶料		
项 目	胎冠胶	胎侧胶	胎冠胶	胎侧胶	
挤出机螺旋					
转速/ (r ·min - 1)	50	20	50	20	
开炼机供胶					
温度/	108	98	102	93	
挤出机挤出					
胎面温度	135	115	130	108	

从表 5 可以看出,添加 MB-69 的胶料, 胎面挤出温度降低,焦烧性能得到了改善。 胎面表面光滑、挤出工艺性能提高。

从表 6 可以看出,成品性能与小配合和 半成品胶料相一致。

表 4 在胎侧胶中应用的试验结果

		对比胎面		加 MB-69 胎面	
项 目 		胎冠	胎侧	胎冠	胎侧
邵尔 A 型硬	上层	61	58	63	61
度/度	中层	61		63	
	下层	60		63	
拉伸强度/MPa	上层	22.4	18.0	24. 1	18.2
	中层	22.4		25.2	
	下层	22.1		23.9	
300 %定伸应	上层	10.1		11.5	
力/ MPa	中层	10.2		12.1	
	下层	10.1		13.0	
扯断伸长率/%	上层	557	572	490	562
	中层	541		530	
	下层	525		520	
扯断永久变形/%	上层	15	15	10	13
	中层	15		15	

表 6 成品性能试验

3 结论

(1) 掺用白炭黑的胎冠胶料使用适量的 MB-69. 胶料的 300 %定伸应力、拉伸强度、 回弹值,撕裂强度,抗疲劳性能和耐磨性能均 明显提高,扯断伸长率、扯断永久变形降低;

下层 15

- (2) 在含白炭黑的胎侧胶料中加入部分 MB-69.胶料的撕裂强度、抗割口增长和耐老 化性能得到明显改善:
- (3) 含有白炭黑的胶料加入适量 MB-69 可降低胶料生热 改善胎面挤出工艺。

收稿日期 1997-03-04

青岛橡胶集团公司改制

为适应社会主义市场经济的发展,青岛 橡胶集团公司进行了改制,成立了国有独资 青岛橡胶集团有限责任公司。

青岛橡胶集团公司对机构职能进行了划 分,并对内部机构进行了重新设置。其中科 技系统设立了总工办、技术处、技术开发中心 和轮胎检测中心 4 个部门,以便更充分地发 挥科技部门的职能作用,达到全面强化新产

品开发和新技术、新工艺、新材料应用及生产 工艺技术管理的目的。营销系统设置了销售 处、进出口公司和供应处,建立起以强大的销 售机构、队伍及网络为硬件,以营销策略、营 销方式、奖惩政策、售后服务为软件的高效营 销系统。整个公司的工作重心向生产一线、 科技系统和营销系统倾斜,以提高企业的市 场竞争力。

(青岛橡胶集团有限责任公司 王 军供稿)